PS2 Comments (CS216 Spring 2006 13 February 2006

Problem Set #2 Comments

LinkedList.py ContinuousList.py
Operation Running Time Memory Running Time | Memory
length(self) O(n) O(n)** or ©(1) o(1) o(1)
__init__(self) O(1) O(1) O(1) O(1)
access(self,index) O(n) ©(n) or O(1) o(1) o(1)
append(self,value) O(n) O(n) O(n) O(n)
__str__(self) O(n) O(n) O(n) O(n)

** Note: this answer is different from what was given in PS2 (see discussion below)

The __init__ method for both LinkedList.py and ContinuousList.py is in ©(1) for both running
time and memory since everytime these classes are initialized, it allocates a constant amount of memory.
There is no input size to scale here.

The running time of access for LinkedList is in ©(n), but only ©(1) for ContinuousList. This is
because in the worst case, we need to call access, n times to get the last element. The memory usage
comprises the memory that must be maintained on the state (for example, to store local variables and
the return address), and any data structures created during the evaluation. The length and access
methods use ©(n) for the memory and running time. length in LinkedList.py calls itself n times.
Each time it calls length, it needs to allocate a constant amount of memory. Hence, a straightforward
implementation of length will use space in ©(n). However, the interpreter may implement tail recursive
calls more efficiently. When there is no computation to do at the callsite after the recursive call, the
recursive call can reuse the stack space from the call site. Clever interpreters and compilers (such as
Python), will not use stack space to keep track of tail recursive calls. If this is done, the amount of
memory used in the length and access methods is constant (©(1)).

Since both LinkedList and ContinuousList are immutable lists, the running time and memory use of
append is in ©(n). Both need to create a copy of the original list before adding the new element.

The __str__ operations both construct a result that contains all the elements of the list, so its size
grows with the length of the list. Hence, both its running time and space usage are in O(n).

Without changing data representation or semantics at all, it is not possible to improve the asymptotic
running time of any of the methods. To do so would require keeping additional information or changing
the structure of the data representation.

We can see this because for the LinkedList implementation, it requires following n next pointers to
get to the end of the list. The access, append, length, and __str__ methods all require reaching the
last element in the list (in the worst case), so there is no way to scale better than ©(n) with the basic
linked representation. We can make the memory usage for all operations except __str__ to be constant
by using iteration instead of recursive calls. For __str__, we can’t improve the space usage since the
output produces scales as ©(n).

However, if we allow some changes to the data representation we can reduce the running time. For
example, we can add a counter variable to the LinkedList representation we can do length in constant
time. It would need to be updated in the append method, but that would not increase its asymptotic
complexity. We could also improve the amortized running time and memory usage of __str__ by main-
taining a string variable that is updated everytime append modifies the list. (We’d better be careful to
only do this when the list elements are immutable, though, otherwise other code may modify the value
of list elements and our cached string will become inconsistent.)
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By changing the semantics of our list to be mutable, we no longer need to copy the list when we
append. This provide the opportunity to do append in constant time, if we can find the end of the list
in constant time. This can be done by adding a new private variable, __last. We modify __init_

initialize it to None:

def __init__(self):
self.__node = None

self.__last = None

Now, you need to modify append. Assume you have a linked list like this:

self.__node self.__last

Thus the first thing append should do is to create a new node.

T T

self.__node self.__last —/

Then point self.__last.__next to the new node.

Ti_

self.__node self.__last

Then set the self.__last to the next of itself.

self.__node self.__last

The case where the list is empty is trivial. The complete append definition in Python is

def append (self, e):
if self.__node == None:
self.__node = ListNode(e)
self.__last = self.__node
else:
self.__last

return self

And class ListNode, add

def changeLink(self, link):
self.__next = link
return self.__next

self.__last.changeLink(ListNode(e))
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One way to do this is to create a table of what bestAlignment ("catg","atgg") will call:

BestAlignment | catg | atg | tg | g
atgg 1 1 1 1

tge 1 3 5 7
gg 1 5 |13 | 25
g 1 7 12563

Each cell is the number of time bestAlignment is called with the corresponding arguments. Note
that each inner cell contains the sum of the values in the cells to its left, above, and diagonal above-left
cells. This corresponds to the possible ways of reaching those arguments. From the table, there are 13
evaluations of bestAlignment ("tg","gg"). To be able to call bestAlignment ("atg","tgg"), it must
be called from one of these functions:

bestAlignment ("atgg","catg")
bestAlignment ("tgg","catg")
bestAlignment ("atgg","atg")

Hence, the number of evaluations of bestAlignment ("atg","tgg") equal to the sum of the number of
time it calls the list above.

The algorithm in the problem set is similar to Needleman-Wunsch in that it computes the best align-
ment of each substring pair once, and uses that to find the best possible alignment. The difference is
Needleman-Wunsch finds the best alignment by building the matrix starting from the beginning (align-
ing or gapping the first element in the sequence), and our algorithm works just like the brute force
algorithm from PS1, except instead of replicating effort recomputing the same best alignments, it saves
the previously computed results.

However, the new implementation is slower than the Needleman-Wunsch algorithm because it needs
to calculate goodnessScore everytime it need to compares. Since the number of times it needs to call
memoBestAlignment and go through the case that it never found before is the same as the number
of times we need to fill to a table a number in Needleman-Wunsch algorithm, the number of times it
call memoBestAlignment is of order O(|U||V|). However, each time the function is called, it needs to
spend time on copying the string, calculating the goodnessScore, and so on. These running times are
in ©(U'| + |V']) € O(|U| 4+ |V|). Note that I use U’, V'’ because most of the time, the strings that
passes to memoBestAlignment are substring of U and V. Thus, this algorithm running time is of order
O((JU| + |V)|U||V]). Note that we have the very strong assumption that look up in dictionary class
has running time in O(1).

The experimental results below support this hypothesis.

N N3 | Est. Ratio | Est. Running Time | Running Time | Actual Time Ratio
100 1000000 1.7
200 8000000 8 13.4 12.4 7.4
300 27000000 3.4 41.8 40.75 3.3
400 64000000 24 96.6 96.25 2.4
500 | 125000000 2.0 188.0 182.8 1.9
1000 | 1000000000 8 1680.0 (error) (error)

Normal compiler/interpreter has a limit of how many depth you can call a function. Since memoBestAlignment
is a recursive call, at N = 1000 the number of recursive calls Python allows is exceeded.

Here is our __str__ definition:
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def __str__(self):
def indentLines (str, level):
if str == None: return None

return str.replace(’\n’, "\n" + ".join([" " * levell))
res = str(self.__value)

for child in self.children ():
res += indentLines ("\n" + str(child), 3)

return res

Note that the running time of this algorithm is ©(n) where n is the number of nodes in the tree.
Problem 7

def allPossiblePartitions (items):
if len(items) ==
yield [items[0]], []
yield [], [items[0]]
else:
for left, right in allPossiblePartitions (items[1:]):
lplus = left[:]
lplus.insert (0, items[0])
yield 1lplus, right
rplus = right[:]
rplus.insert (0, items[0])
yield left, rplus

(a) The running time of

for pl,p2 in allPossiblePartitions(items):
print pl,p2

Let f(n) be the number of yield operations in allPossiblePartitions(items) where n is the
number of element in items.

The base case is f(1) = 2, since if the length of items is one, it yields twice. For n > 1

fn) =2xf(n—1)

since if the length of items is greater than 1, it calls yeild twice for each element it receives from
the generator.

The close form of function f(n) is 2”. This makes sense: there are 2™ possible partitions of a set
of n items. This is similar to the powerset, except instead of just collecting the subsets, we are
collecting the subset and complement pairs.

This gives the number of iterations of the loop, but for the running time, we need to know how
much work each iteration is. Suppose the list copy and insert operations have running time in
Theta(n). Then, the average length each list is n/2, so the work for each iteration is still Theta(n).
So, the total work is in ©(n2™). We leave it as an exercise for the reader to determine whether or
not ©(n2") is the same set as O(2").
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(b) The memory space is easier to calculate. Each time allPossiblePartitions is called, it allocates
new lists of size n and if n > 1, al1PossiblePartitions will call itself with the size of list reduced
by 1. Let m(n) be the memory usage. We can describe m(n) as

m(n):{l n=1

mn—1)+n n>1

which is the sum of series m(n) = n+(n—1)+(n—2)+...4 1. Therefore, al1PossiblePartitions
uses O(n?) for the memory space.

The brute force approach is to generate all possible trees, calculate the goodness score for each tree,
and keep the trees with the maximal score.

We can generate all possible trees by picking each possible node as the root, and considering all
possible trees we can generate for the left and right children of that node. The allPossiblePartitions
procedure is useful for for this. We can consider the partitions as grouping the set of nodes in the left
branch and right branch of the tree. So, we create all possible trees for each partition, and construct the
tree from the root node and choices of left and right trees.

Recursively, we can think of the base case as being the set containing just one element. It has one
possible tree with that element as the root. If the set has more than one element, we need to construct
all possible trees by selecting each of the elements as the root, and constructing all possible trees with
that node as the root, and the other elements partitioned between its right and left branches. We can
have only one child, or two children. If we have one child, then we just need to construct all possible
trees for the remaining nodes, and make each of those the child of the selected root node. If we have two
children, we need to try all possible partitions of the remaining nodes, and all possible trees with each
partition.

Assume that generateAllTrees(alist) will generate all possible binary trees that compose of ele-
ment in alist.

In the base case, if the size of element in the alist is 1, just return the tree with that element as the
root:

def generateAllTrees(alist):
if len(alist) == 1:
yield Tree(alist[0])

Otherwise, we need to construct the all possible trees from the alist. For each element in alist, it
is the candidate to be a root. So we can say that

else:
for root in alist:

So the root should not be in alist because we want to generate tree from the remaining elements
(note that we are careful to copy alist before removing the element, since we do not want to modify the
original list):

newlist = alist[:]
newlist.remove(root)
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Now, we have to generate left and right subtrees of the root we have. Fortunately, we have the function
that can generate all possible binary trees, that is generateAllTrees itself. So we need to worry about
what we should put in the list for generateAllTrees to generate left subtrees and right subtrees. We
need to consider all ways of partitioning the nodes.

The left subtrees and the right subtrees come from the all possible partitions from the newlist:

for leftlist, rightlist in allPossiblePartitions(newlist):

Now we generate the tree with three cases : the root has child on both side, only left side and only
right side.

for leftlist, rightlist in allPossiblePartitions(newlist):
# have child on both side
for leftTree in generateAllTrees(leftlist):
for rightTree in generateAllTrees(rightlist):
rootTree = Tree(root)
rootTree.addLeft (leftTree)
rootTree.addRight (rightTree)
yield rootTree
# have only left Tree
if (len(rightlist)==0):
rootTree = Tree(root)
rootTree.addLeft (leftTree)
yield rootTree
# have child on right side
if (len(leftlist) == 0):
for rightTree in generateAllTrees(rightlist):
rootTree = Tree(root)
rootTree.addRight (rightTree)
yield rootTree

Putting it all together, we have:

def generateAllTrees (sset):
if len(sset)==1:
yield Tree.Tree(sset[0])
else:
for species in sset:
newset = sset[:]
newset.remove(species)
for pl,p2 in allPossiblePartitions(newset):
for lefttree in generateAllTrees(pl):
if (len(p2)==0):
tree = Tree.Tree(species)
tree.addLeft(lefttree)
yield tree
else:
for righttree in generateAllTrees(p2):
tree = Tree.Tree(species)
tree.addLeft(lefttree)
tree.addRight (righttree)
yield tree
if (len(p1)==0):
for righttree in generateAllTrees(p2):
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tree = Tree.Tree(species)
tree.addRight (righttree)
yield tree

We can find the best tree by trying all possible trees to find the highest possible parsimony score, and
then output all trees that match that score:

def findTree (sset):
def parsimonyScore(tree, seqs, ¢, g):
sum = 0
for child in tree.children():
sum += DynAlign.bestScore(seqs[tree.getValue()], seqs[child.getValue()], c, g) \
+ parsimonyScore(child, seqgs, c, g)
return sum

species = []
for name in sset:
species.append (name)
maxcost = 0
for tree in generateAllTrees(species):
maxcost = max(maxcost, parsimonyScore(tree, sset, 10, 2))

for tree in generateAllTrees(species):
if (parsimonyScore(tree, sset, 10, 2)) == maxcost:
yield tree

This code is simple, but inefficient. We can improve its efficiency by caching the goodness score values
of each pair of sequences so that we need don’t need to spend time on recalculating DynAlign.bestScore:

def findTree (sset):
# constants we use for the match score and gap penalty
c =10
g =2

def parsimonyScore (tree):
# pre: goodness must be a completed goodness matrix for
# all the species in tree
score = 0

for child in tree.children(Q):
score += goodness[tree.getValue ()] [child.getValue ()]
score += parsimonyScore (child)

return score

# first, find the goodness scores between all pairs
goodness = {}
for keyl in sset.keys (:
goodness [keyl] = {}
for key2 in sset.keys ():
goodness [keyl] [key2] = DynAlign.bestScore (ssetl[keyl], ssetl[key2], c, g)

bestscore = 0
besttrees = None
# find the most parsimonious (highest scoring) tree
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for tree in allPossibleTrees (sset.keys ()):
treescore = parsimonyScore (tree)
if besttrees == None or treescore > bestscore:
besttrees = [tree]
bestscore = treescore
elif treescore == bestscore:
besttrees.append (tree)

print "The best " + str(len(besttrees)) + " trees are (score: " + str(bestscore) + "):\n"
for tree in besttrees:
print tree

Note that the code above generates all the trees including trees that are isomorphic (equivalent if the
left and right branches are swapped). To make it only yield distinct trees, we need to add two rules:

e Every node has a right child must have a left child.

e Every node that has both left and right child, the value in the node in the left child must be less
than the value in the node in the right child.

Here is a version of generateAl1Trees that generates only the distinct trees:

def generateAllTrees (sset):
if len(sset)==1:
yield Tree.Tree(sset[0])
else:
for species in sset:
newset = sset[:]
newset.remove(species)
for pl,p2 in allPossiblePartitions(newset):
if (len(p1)!=0):
for lefttree in generateAllTrees(pl):
if (len(p2)==0):
tree = Tree.Tree(species)
tree.addLeft(lefttree)
yield tree
else:
for righttree in generateAllTrees(p2):
tree = Tree.Tree(species)
if (lefttree.getValue() < righttree.getValue()):
tree.addLeft(lefttree)
tree.addRight (righttree)
yield tree

‘ Problem 10 ‘

To solve this problem we need to analytically determine the rate of growth of our procedure, and
experimentally measure its time on some inputs.

Let n be the number of elements, and k be the length of the sequences.

The generateAllTrees procedure in isomorphic case generates exactly n”—JrllC (2n,n) trees. This grows
enormously:
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Number of Trees

1 1
2 4
3 30
4 336
5 5040
6 95040
7 2162160
8 57657600
9 1764322560
10 60949324800
11 2346549004800
12 99638080819200
13 4626053752320000
14 233153109116928000
15 12677700308232960000
16 739781100339240960000
17 46113021921146019840000
18 3058021453718104473600000
19 214978908196382744494080000
20 | 15969861751731289590988800000

However, the running time to generate all the tree is O(n-2-C(2n,n)).

n+1

In this case, we go through all these trees, and each tree we calculate the goodnessScore from the tree.
To calculate goodnessScore of a tree, we look at each link, which consists of n — 1 links and then find
the best match of two sequences, which costs k3.

Thus, the approximate running time is of order ©(k3n

n+1

Our implementation only works for n <= r:

nlC(2n,n)).

n | k | Expected Value | Ratio | Expected Running Time (s) | Actual Running Time (s)
3|10 270000 None 0.5
3120 2160000 8.0 None 2.7
3|40 17280000 8.0 21.7 20.4
3|60 58320000 3.4 68.9 65.2
3|70 92610000 1.6 103.5 110.9
3180 138240000 1.5 165.5 166.2
4130 145152000 1.1 174.6 189.4
4120 43008000 0.3 56.1 57.2

With n > 4, Python runs out of resources before completing.

The question asked for an estimate of how long it would take to find a phylogeny with n = 16. The
number of trees we would need to consider at n = 16 is 2201729465295360000 times the number of trees
at n = 4. So, even if we optimized out all the other factors in the running time, if it takes 1 minute to
solve the case where n = 4, it will take over 4 quadrillion years to solve the case where n = 16. Most
biologists are not willing to wait so long. Hence, the greedy algorithm in PS3 and the reason biologists
must settle for possibly non-optimal phylogenies.



