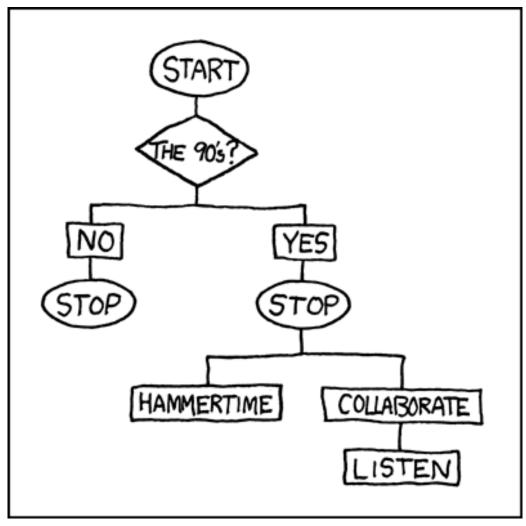
## Indexed Languages

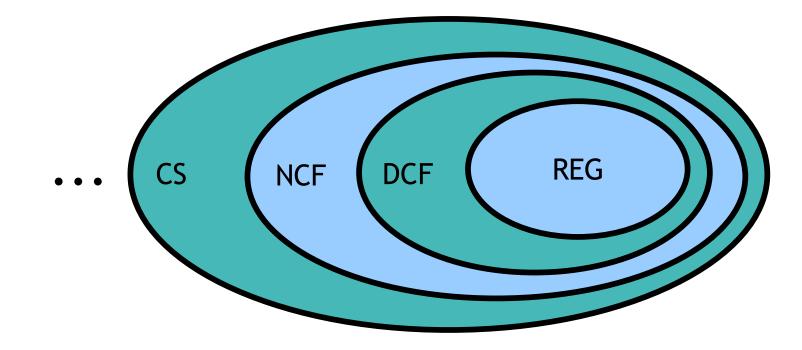
#### and why you care

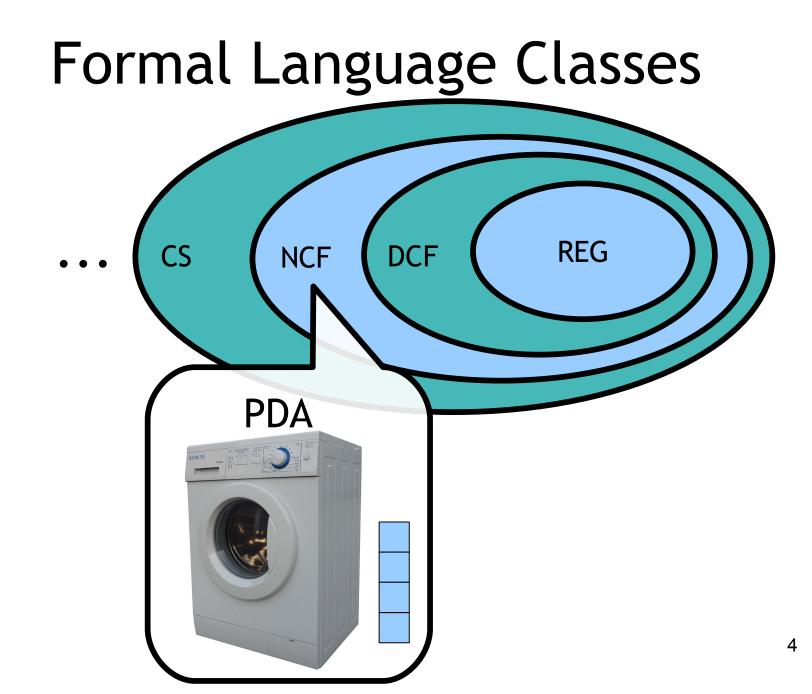
Presented by Pieter Hooimeijer 2008-02-07

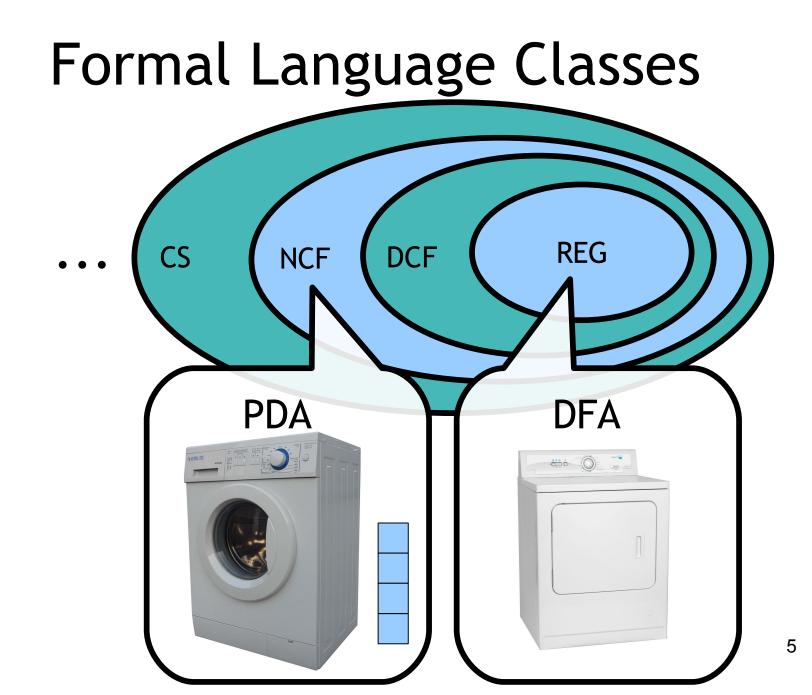
## Think Way Back...

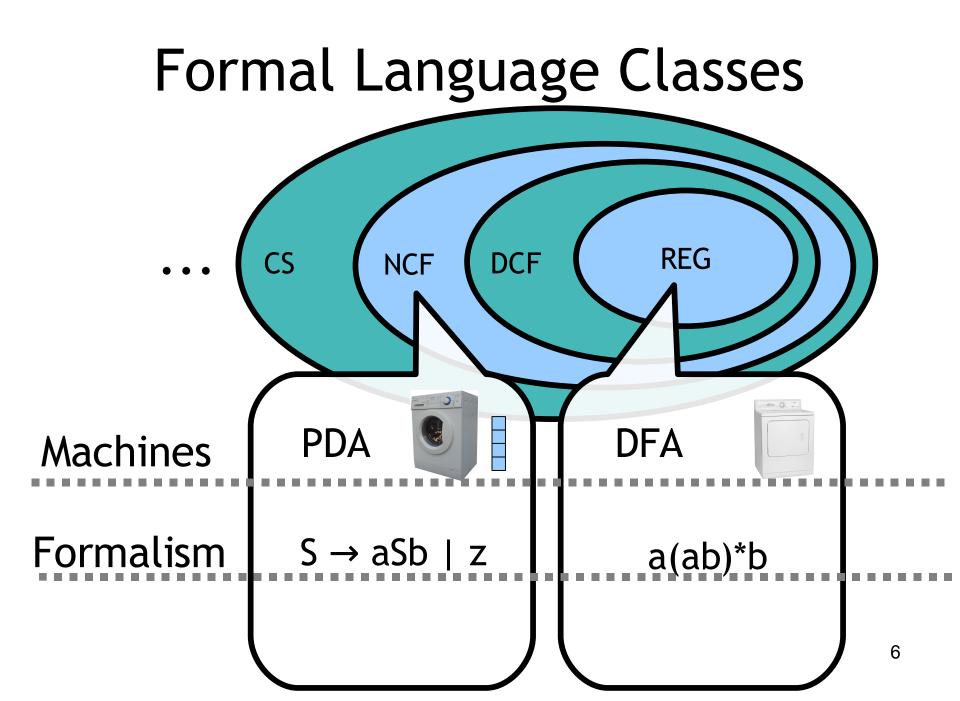


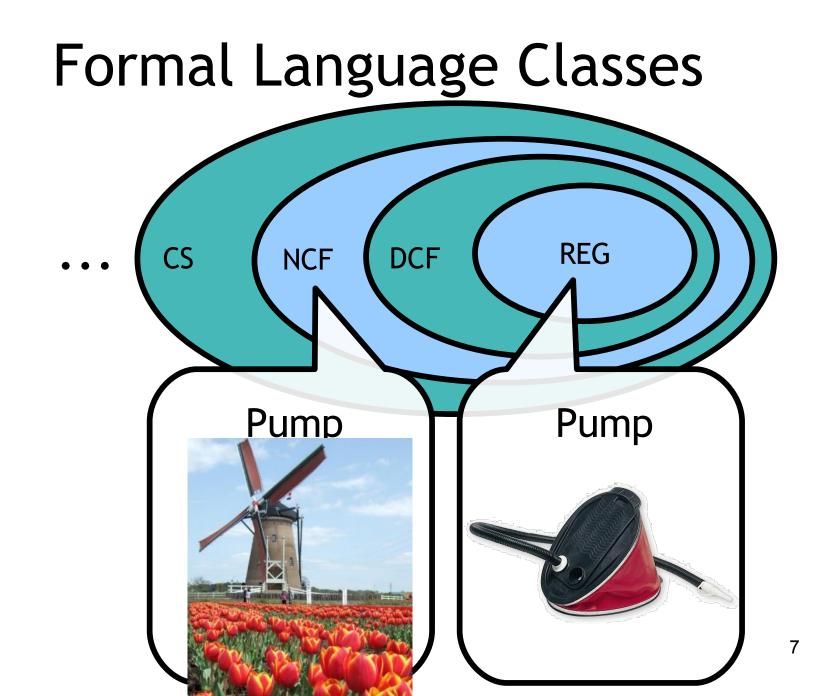
## ... Far Enough:





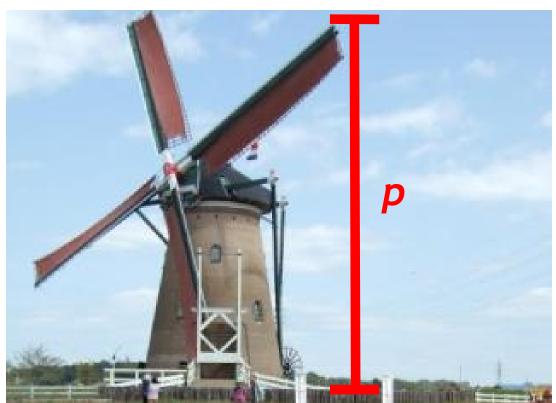






## The Context-Free Pumping Lemma

Suppose L = {  $a^nb^nc^n | n = 1...$ } is contextfree. By the pumping lemma, any string s with  $|s| \ge p$  can be 'pumped.'



## The Context-Free Pumping Lemma

What does 'can be pumped' mean?

S = UVXYZ1) | vy | > 0 2) | vxy |  $\leq p$ 3)  $uv^{i}xy^{i}z$  is in L for all  $i \geq 0$ 

## The Context-Free Pumping Lemma

Suppose L = {  $a^nb^nc^n$  | n = 1...} is context-free.

Consider  $s = a^p b^p c^p$ ; for any split s = uvxyz, we have:

- if v contains a's, then y cannot contain c's
- if y contains c's, then v cannot contain a's - a problem:  $uv^0xy^0z = uxz$  will never be in L

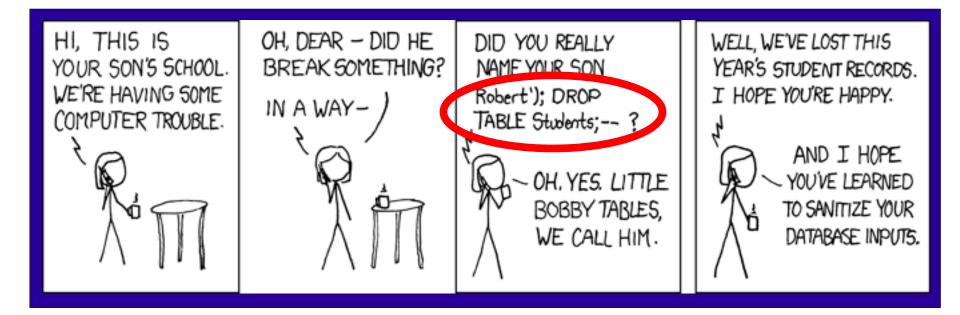
## Moving Right Along



## Motivation - Some Examples

- Can solve problems by phrasing them as 'language' problems:
  - Finding valid control flow graph paths
  - Solving set constraint problems
  - Static string analysis
  - Lexing, parsing
- For fun...

## **Example - String Variables**

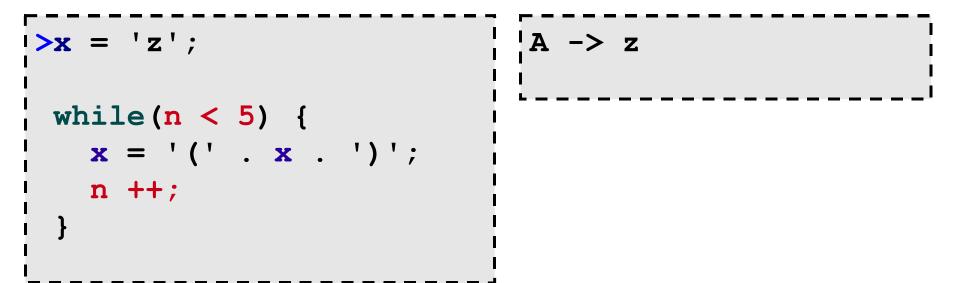


#### Some Code:

x = 'z'; while(n < 5) { x = '(' . x . ')'; n ++; }

- We want a context free grammar to model **x**
- Suppose we don't know anything about n

#### Some Code:



#### Some Code:

| <b>x</b> = 'z';                                                  | A -> z   | [True]  |
|------------------------------------------------------------------|----------|---------|
| <pre>while(n &lt; 5) { &gt; x = '(' . x . ')';     n ++; }</pre> | B -> (A) | [n < 5] |

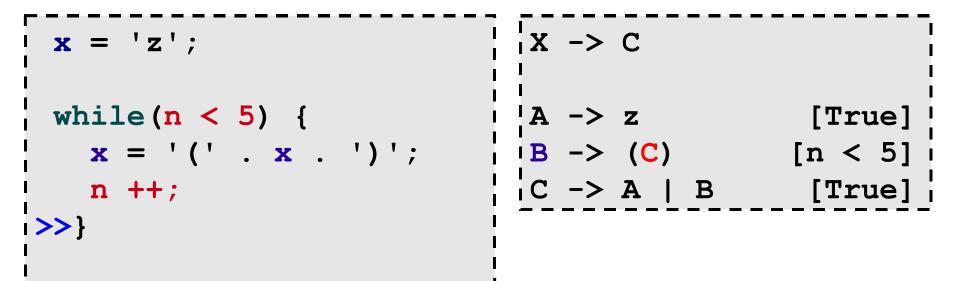
#### Some Code:

| <b>x</b> = 'z';                                                         | A -> z                 | [True]             |
|-------------------------------------------------------------------------|------------------------|--------------------|
| <pre>while(n &lt; 5) {     x = '(' . x . ')';     n ++; &gt;&gt;}</pre> | B -> (A)<br>C -> A   B | [n < 5]<br>[n < 5] |

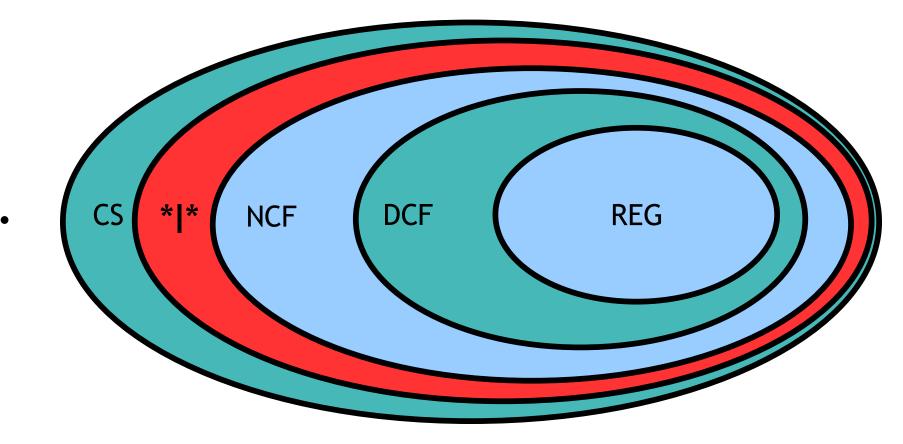
#### Some Code:

```
x = 'z';
while(n < 5) {
    x = '(' . x . ')';
    n ++;
>>}
A -> z [True]
B -> (C) [n < 5]
C -> A | B [True]
```

#### Some Code:

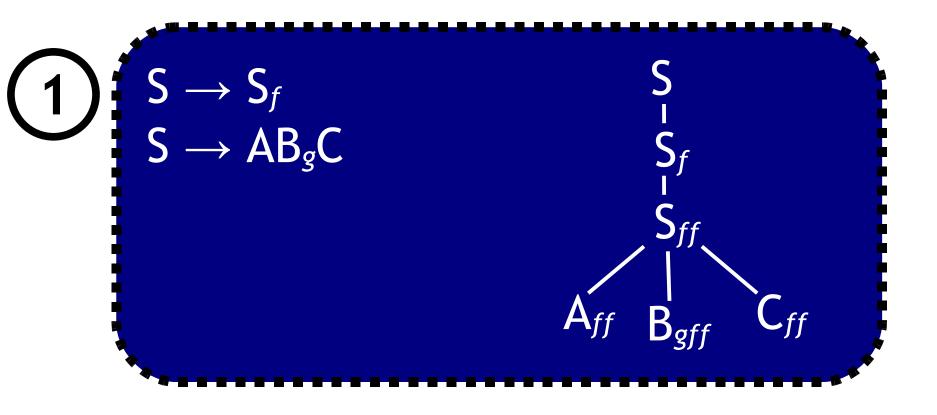


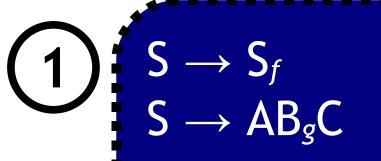
## Indexed Languages



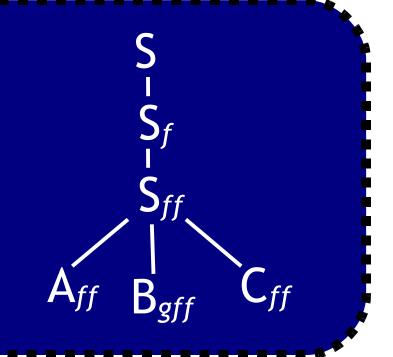
## **Definition: Indexed Grammar**

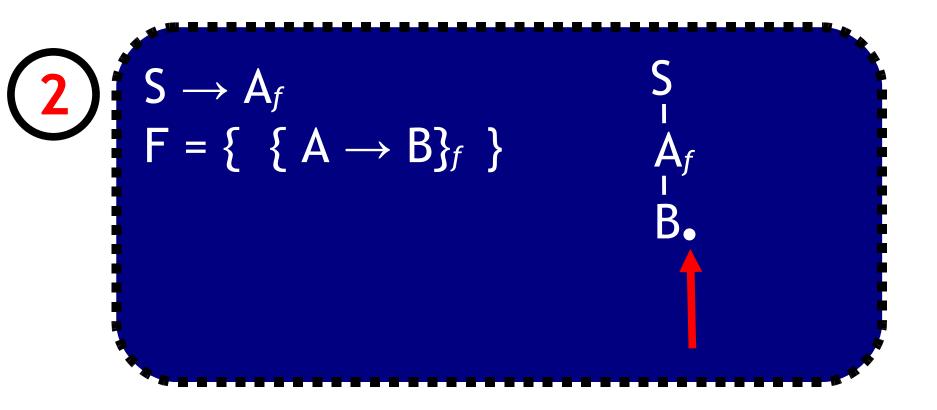
- G = (N, T, F, P, S)
  - $\begin{array}{rcl} \mathsf{P} & : & \{ \mathsf{N} \to ((\mathsf{NF}^*) \cup \mathsf{T})^* \} \\ \mathsf{F} & : & \{ \{ \mathsf{N} \to (\mathsf{N} \cup \mathsf{T})^* \}_f \end{array} \end{array}$

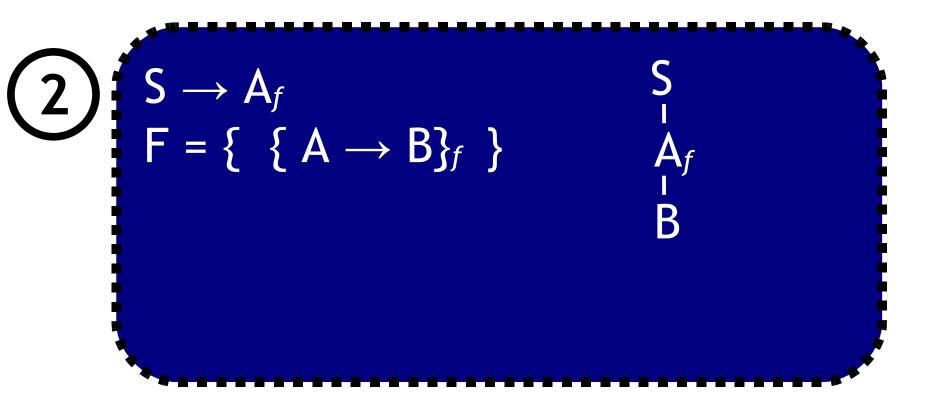




'normal' production: copy index stack







B

'index' production: pop leftmost index (for current nonterminal only)

 $\begin{array}{c} (2) \quad S \to A_f \\ F = \{ \{ A \to B \}_f \} \end{array}$ 

# An Example Grammar $S \rightarrow D_f$ $g = \{A \rightarrow Aa$ $f = \{A \rightarrow a$ $D \rightarrow D_g \mid ABC$ $B \rightarrow Bb$ $B \rightarrow b$ $C \rightarrow Cc\}$ $C \rightarrow c\}$

#### What is the language of this grammar?



29

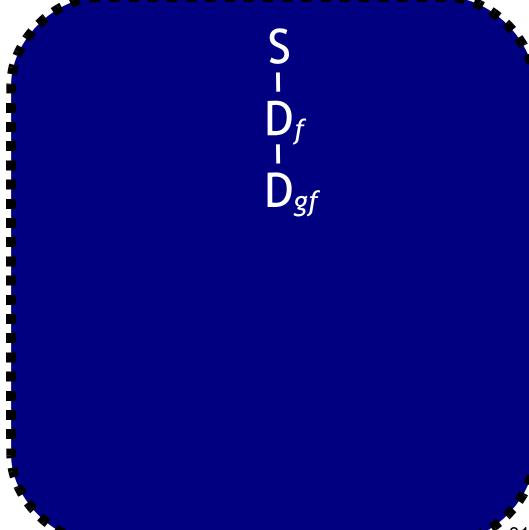
|   | $\rightarrow D_{f}$ $\rightarrow D_{g} \mid ABC$                             |
|---|------------------------------------------------------------------------------|
| g | $= \{A \longrightarrow Aa \\ B \longrightarrow Bb \\ C \longrightarrow Cc\}$ |
| f | $= \{A \rightarrow a \\ B \rightarrow b \\ C \rightarrow c\}$                |

 $\tilde{\mathsf{D}}_{f}$ 

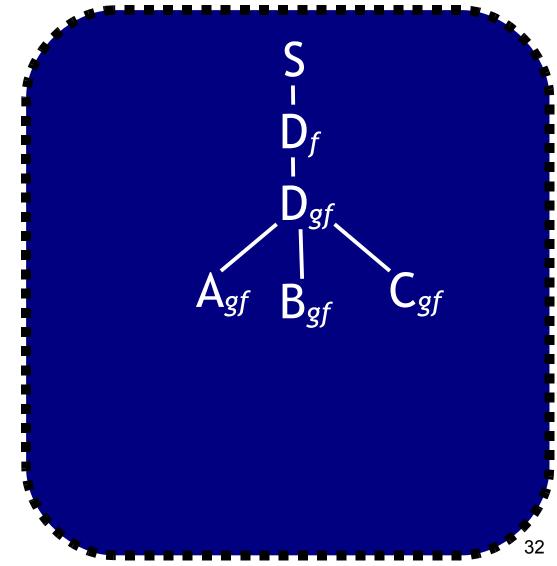
30

| S →<br>D → | $\rightarrow D_{f}$<br>$\rightarrow D_{g} \mid ABC$                                          |
|------------|----------------------------------------------------------------------------------------------|
| <i>g</i> = | $\begin{array}{l} \{A \rightarrow Aa \\ B \rightarrow Bb \\ C \rightarrow Cc \} \end{array}$ |
| <i>f</i> = | $\{A \rightarrow a \\ B \rightarrow b \\ C \rightarrow c\}$                                  |

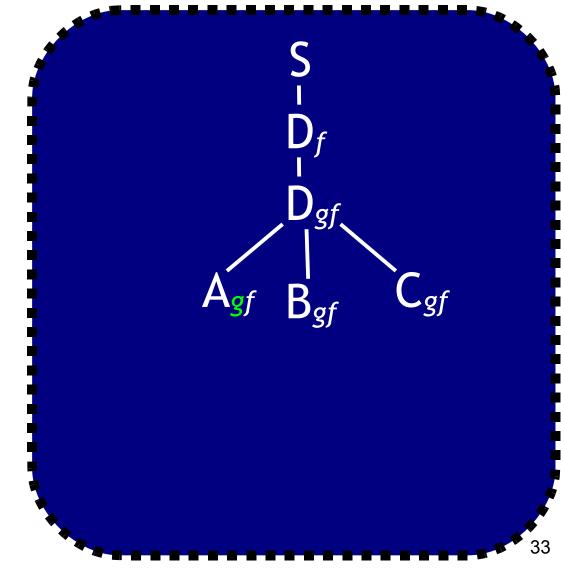
|   | $\rightarrow D_{f}$<br>$\rightarrow D_{g} \mid ABC$              |
|---|------------------------------------------------------------------|
| g | $= \{A \rightarrow Aa \\ B \rightarrow Bb \\ C \rightarrow Cc\}$ |
| f | $= \{A \rightarrow a \\ B \rightarrow b \\ C \rightarrow c\}$    |



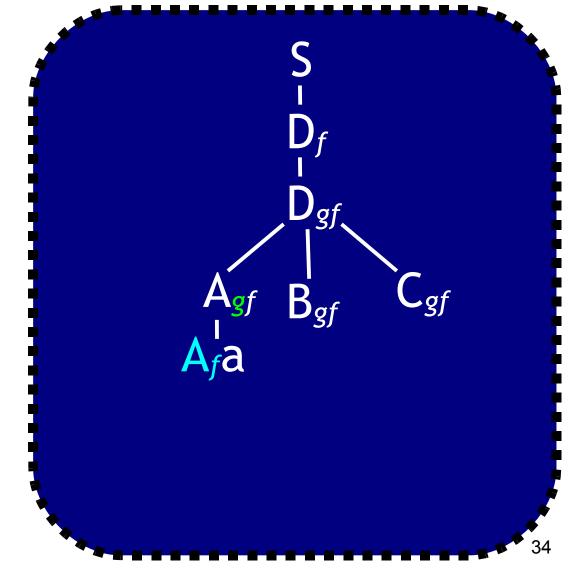
| $S \rightarrow D_f$ $D \rightarrow D_g \mid ABC$                               |
|--------------------------------------------------------------------------------|
| $g = \{A \longrightarrow Aa \\ B \longrightarrow Bb \\ C \longrightarrow Cc\}$ |
| $f = \{A \longrightarrow a \\ B \longrightarrow b \\ C \longrightarrow c\}$    |



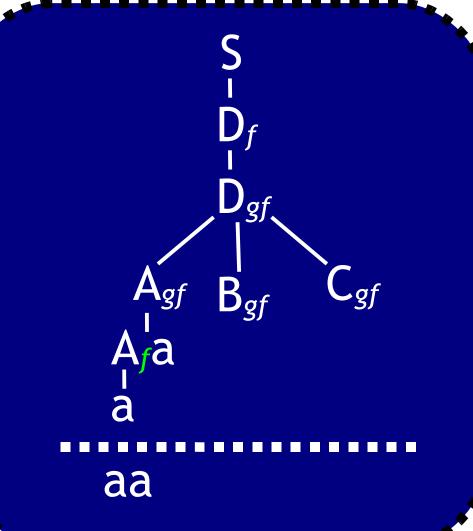
|   | $\rightarrow D_{f}$ $\rightarrow D_{g} \mid ABC$                   |
|---|--------------------------------------------------------------------|
| g | $= \{ A \rightarrow Aa \\ B \rightarrow Bb \\ C \rightarrow Cc \}$ |
| f | $= \{A \rightarrow a \\ B \rightarrow b \\ C \rightarrow c\}$      |



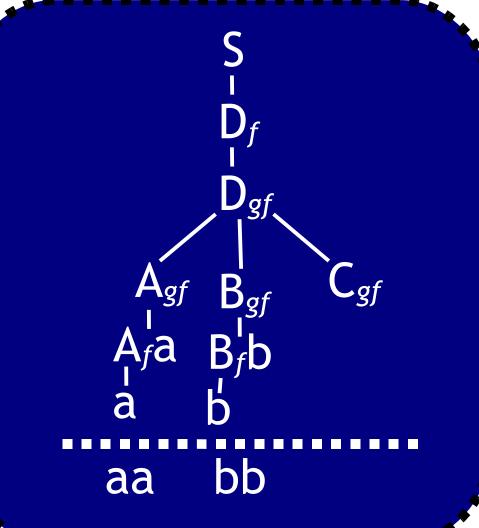
| $S \longrightarrow D_f$ $D \longrightarrow D_g \mid ABC$                       |
|--------------------------------------------------------------------------------|
| $g = \{A \longrightarrow Aa \\ B \longrightarrow Bb \\ C \longrightarrow Cc\}$ |
| $f = \{A \rightarrow a \\ B \rightarrow b \\ C \rightarrow c\}$                |



| $\begin{array}{l} S \to D_f \\ D \to D_g \mid ABC \end{array}$                |  |
|-------------------------------------------------------------------------------|--|
| $g = \{A \rightarrow Aa \\ B \rightarrow Bb \\ C \rightarrow Cc\}$            |  |
| $f = \{ A \longrightarrow a \\ B \longrightarrow b \\ C \longrightarrow c \}$ |  |

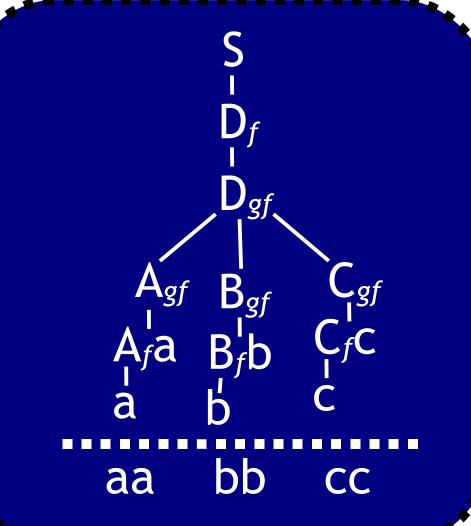


| $S \longrightarrow D_f$ $D \longrightarrow D_g \mid ABC$                       |
|--------------------------------------------------------------------------------|
| $g = \{A \longrightarrow Aa \\ B \longrightarrow Bb \\ C \longrightarrow Cc\}$ |
| $f = \{A \longrightarrow a \\ B \longrightarrow b \\ C \longrightarrow c\}$    |



## An Example Grammar

| $\begin{array}{l} S \to D_f \\ D \to D_g \mid ABC \end{array}$                 |  |
|--------------------------------------------------------------------------------|--|
| $g = \{A \longrightarrow Aa \\ B \longrightarrow Bb \\ C \longrightarrow Cc\}$ |  |
| $f = \{A \longrightarrow a \\ B \longrightarrow b \\ C \longrightarrow c\}$    |  |

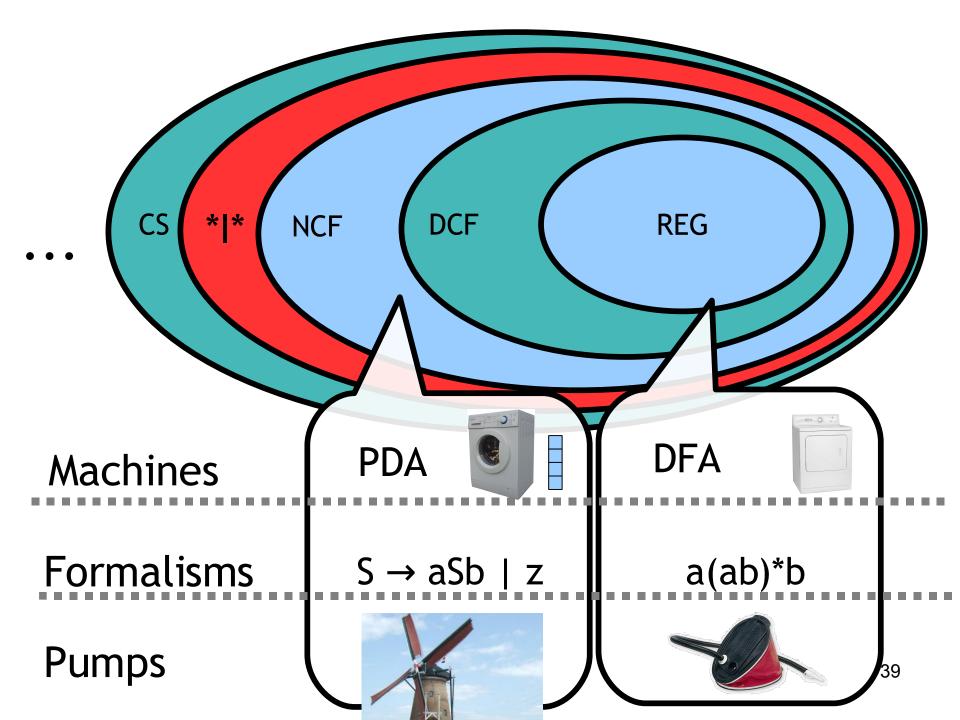


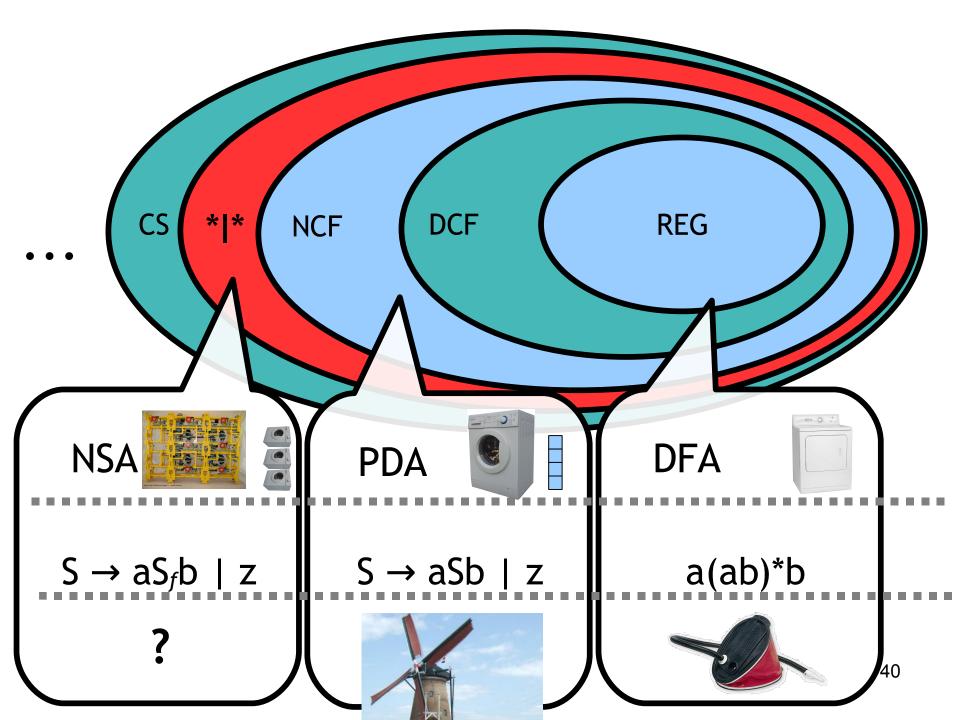
#### Where am I?

#### $\{a^{n}b^{n}c^{n} \mid n = 1...\}$

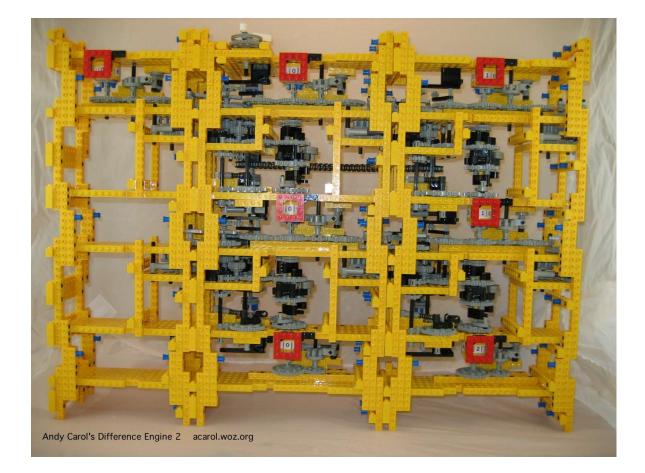
CS \* I\* NCF DCF

REG





#### Associated Automaton



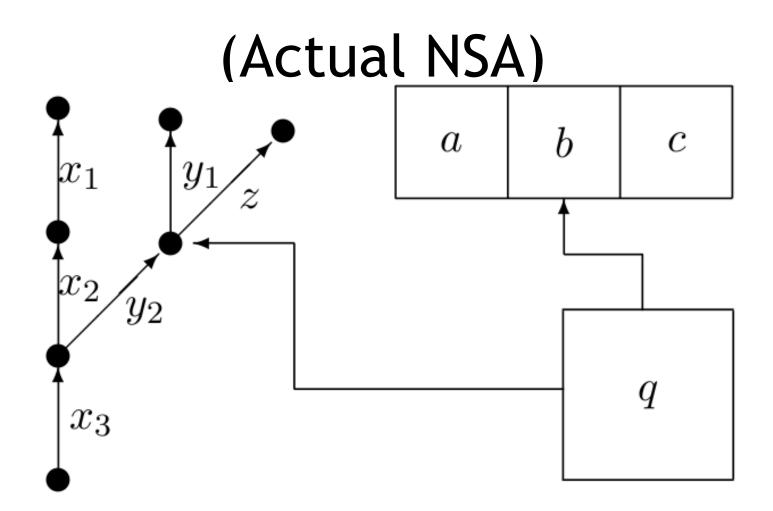
## Associated Automaton











# But will it pump?

- It's complicated on derivation trees rather than strings [Hayashi 1973]
- Several corollaries exist [Gilman 1996] (less general; easier to use)

## The Lemma

L : indexed language

*m* : positive integer

There is a constant k > 0 so that each w in L can be split ( $w = w_1 w_2 \dots w_r$ ) subject to:

## The Lemma

- *L* : indexed language *m* : positive integer
- There is a constant k > 0 so that each w in L can be split ( $w = w_1 w_2 \dots w_r$ ) subject to:
  - $m < r \leq k$
  - each  $|w_i| > 0$

## The Lemma

- L: indexed language m: positive integer
- There is a constant k > 0 so that each w in L can be split ( $w = w_1 w_2 \dots w_r$ ) subject to:

• 
$$m < r \leq k$$

- each  $|w_i| > 0$
- any *m*-sized set of w<sub>i</sub>'s is a subset of some w' in L; w' is a subproduct of w

## Lemma Example

Suppose  $L = \{(ab^n)^n \mid n \in \mathbb{N}\}$  is indexed. Let m = 1.

Consider  $w = (ab^n)^n$  with n > k, which can be split into rsubproducts:  $w = w_1 w_2 \dots w_r$ . Since  $r \le k$ , at least one  $w_i$  must contain two or more *a*'s.

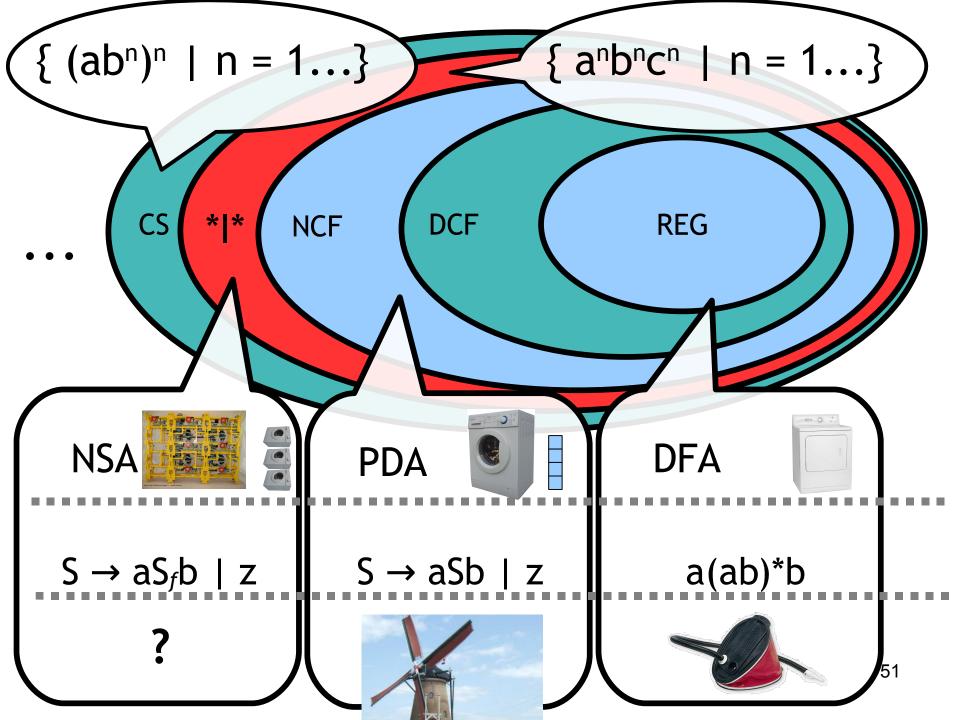
## Lemma Example

Suppose  $L = \{(ab^n)^n \mid n \in \mathbb{N}\}$  is indexed. Let m = 1.

Consider  $w = (ab^n)^n$  with n > k, which can be split into rsubproducts:  $w = w_1 w_2 \dots w_r$ . Since  $r \le k$ , at least one  $w_i$  must contain two or more *a*'s.

Pick such a  $w_i$ . Any w' that contains  $w_i$  must contain the substring  $ab^n a$ . Contradiction: w' cannot simultaneously be a substring of w and contain  $ab^n a$ .

#### (Montage Time)





## References

- Indexed Grammars An Extension to Context-Free Grammars (Aho)
- Nested Stack Automata (Aho)
- Sequentially Indexed Grammars (van Eijck)
- A Shrinking Lemma for Indexed Languages (Gilman)
- On Groups Whose Word Problem is Solved by a Nested Stack Automaton (Gilman and Shapiro)
- On Derivation Trees of Indexed Grammars (Hayashi)