
1

David Evans
http://www.cs.virginia.edu/evans

cs302: Theory of Computation

University of Virginia

Computer Science

Lecture 11: Lecture 11:

ParsimoniousParsimonious

ParsingParsing

2Lecture 11: Parsimonious Parsing

Menu

• Fix proof from last class

• Interpretive Dance!

• Parsimonious Parsing (Parsimoniously)

PS3 Comments Available Today
PS3 will be returned Tuesday

3Lecture 11: Parsimonious Parsing

Closure Properties of CFLs
If A and B are context free languages then:

AR is a context-free language TRUE

A* is a context-free language TRUE

A is a context-free language (complement)?

A ∪ B is a context-free language TRUE

A ∩ B is a context-free language ?

4Lecture 11: Parsimonious Parsing

Complementing Non-CFLs

L
ww

= {ww | w ∈ Σ* } is not a CFL.

Is its complement?

Yes. This CFG recognizes is:

S → 0S0 | 1S1 | 0X1 | 1X0

X → 0X0 | 1X1 | 0X1 | 1X0 | 0 | 1 | ε

Bogus Proof!

S → 0X1 → 01X01 → 0101 ∈∈∈∈ L
ww

What is
the actual
language?

5Lecture 11: Parsimonious Parsing

CFG for L
ww

(L
¬ww

)

S → SOdd | SEven

All odd length strings are in L
¬ww

SOdd → 0R | 1R | 0 | 1

R → 0SOdd | 1SOdd

SEven → XY | YX

X → ZXZ | 0

Y → ZYZ | 1

Z → 0 | 1

How can we prove this is correct?

6Lecture 11: Parsimonious Parsing

Sodd generates all
odd-length strings

SOdd → 0R | 1R | 0 | 1

R → 0SOdd | 1SOdd

Proof by induction on the length of the string.

Basis. SOdd generates all odd-length strings of

length 1. There are two possible strings: 0 and 1.
They are produces from the 3rd and 4th rules.

Induction. Assume SOdd generates all odd-length

strings of length n for n = 2k+1, k ≥ 0. Show it can
generate all odd-length string of length n+2.

2

7Lecture 11: Parsimonious Parsing

SOdd generates all
odd-length strings

SOdd → 0R | 1R | 0 | 1

R → 0SOdd | 1SOdd

Induction. Assume SOdd generates all odd-length strings

of length n for n = 2k+1, k ≥ 0. Show it can generate all
odd-length string of length n+2.
All n+2 length strings are of the form abt where t is an n-
length string and a ∈ {0, 1}, b ∈ {0, 1}. There is some

derivation from SOdd⇒* t (by the induction hypothesis). We

can generate all four possibilities for a and b:

00t: SOdd→ 0R → 00SOdd ⇒* 00t

01t: SOdd→ 0R → 01SOdd ⇒* 01t

10t: SOdd→ 1R → 10SOdd ⇒* 10t

11t: SOdd→ 1R → 11SOdd ⇒* 01t

8Lecture 11: Parsimonious Parsing

CFG for L
ww

(L
¬ww

)

S → SOdd | SEven

SOdd → 0R | 1R | 0 | 1

R → 0SOdd | 1SOdd

SEven → XY | YX

X → ZXZ | 0

Y → ZYZ | 1

Z → 0 | 1

?
Proof-by-leaving-as-“Challenge
Problem” (note: you cannot use this
proof technique in your answers)

9Lecture 11: Parsimonious Parsing

Even Strings

Show SEvengenerates the set
of all even-length strings
that are not in L

ww
.

Proof by induction on the length of the string.

Basis. SEven generates all even-length strings of

length 0 that are not in L
ww
. The only length 0

string is ε. ε is in L
ww

since ε = εε, so ε should not be

generated by SEven. Since SEven does not contain any right

sides that go to ε, this is correct.

SEven → XY | YX

X → ZXZ | 0

Y → ZYZ | 1

Z → 0 | 1

10Lecture 11: Parsimonious Parsing

Closure Properties of CFLs
If A and B are context free languages then:
AR is a context-free language TRUE

A* is a context-free language TRUE

A is not necessarily a context-free
language (complement)

A ∪ B is a context-free language TRUE

A ∩ B is a context-free language ? Left for you to solve

(possibly on Exam 1)

11Lecture 11: Parsimonious Parsing

Where is English?

Regular Languages

Context-Free Languages

Vio
late

s P
um

pin
g

Lem
ma F

or
RLs

V
io
la
te
s

P
u
m
p
in
g
 L
e
m
m
a

Fo
r
C
FL
s

Described by DFA, NFA,
RegExp, RegGram

D
escribed by CFG

,

N
D
P
D
A

0n1n
0n1n2n

0n

w

A
ww

Dete
rminist

ic C
FLs

12Lecture 11: Parsimonious Parsing

English ∉ Regular Languages

The cat likes fish.

The cat the dog chased likes fish.

The cat the dog the rat bit chased likes fish.

…

This is a pumping lemma proof!

3

13Lecture 11: Parsimonious Parsing

Chomsky’s
Answer

(Syntactic
Structures,

1957)

= DFA

= CFG

14Lecture 11: Parsimonious Parsing

Current Answer

• Most linguists argue that most
natural languages are not context-
free

• But, it is hard to really answer this
question:

e.g.,
“The cat the dog the rat bit chased likes fish.” ∈ English?

15Lecture 11: Parsimonious Parsing

Where is Java?

Regular Languages

Context-Free Languages

Vio
late

s P
um

pin
g

Lem
ma F

or
RLs

V
io
la
te
s

P
u
m
p
in
g
 L
e
m
m
a

Fo
r
C
FL
s

Described by DFA, NFA,
RegExp, RegGram

D
escribed by CFG

,

N
D
P
D
A

0n1n
0n1n2n

0n

w

A
ww

Dete
rminist

ic C
FLs

16Lecture 11: Parsimonious Parsing

Interpretive Dance

17Lecture 11: Parsimonious Parsing

Where is Java?

Regular Languages

Context-Free Languages

Vio
late

s P
um

pin
g

Lem
ma F

or
RLs

V
io
la
te
s

P
u
m
p
in
g
 L
e
m
m
a

Fo
r
C
FL
s

Described by DFA, NFA,
RegExp, RegGram

D
escribed by CFG

,

N
D
P
D
A

0n1n
0n1n2n

0n

w

A
ww

Dete
rminist

ic C
FLs

18Lecture 11: Parsimonious Parsing

What is the Java Language?

public class Test {
public static void main(String [] a) {

println("Hello World!");
}

}
Test.java:3: cannot resolve symbol
symbol : method println (java.lang.String)

// C:\users\luser\Test.java
public class Test {

public static void main(String [] a) {
println ("Hello Universe!");

}
} }

Test.java:1: illegal unicode escape
// C:\users\luser\Test.java

In the Java
Language

Not in the Java
Language

4

19Lecture 11: Parsimonious Parsing

// C:\users\luser\Test.java

public class Test {
public static void main(String [] a) {

println ("Hello Universe!");

}
} }

> javac Test.java
Test.java:1: illegal unicode escape

// C:\users\luser\Test.java

^
Test.java:6: 'class' or 'interface' expected

} }
^

Test.java:7: 'class' or 'interface' expected

^

Test.java:4: cannot resolve symbol
symbol : method println (java.lang.String)

location: class Test

println ("Hello World");
^

4 errors

Parsing errors

Scanning error

Static semantic errors

20Lecture 11: Parsimonious Parsing

Defining the Java Language

{ w | w can be generated by the CFG
for Java in the Java Language
Specification }

{ w | a correct Java compiler can build
a parse tree for w }

21Lecture 11: Parsimonious Parsing

Parsing

S → S + M | M

M → M * T | T

T → (S) | number

3 + 2 * 1

S

S M+

M T*

1T

2

M

T

3

D
e
riv

a
tio

n P
a
rs
in
g

Programming
languages
are (should be)
designed to make
parsing easy,
efficient, and
unambiguous.

22Lecture 11: Parsimonious Parsing

Unambiguous
S → S + S | S * S | (S) | number

3 + 2 * 1

S

S S+

S*

1
2

3
S

3 + 2 * 1

S

S S*

1S S+

3 2

23Lecture 11: Parsimonious Parsing

Ambiguity

How can one determine if a CFG is ambiguous?

Super-duper-challenge problem: create a program that
solve the “is this CFG ambiguous” problem:

Input: CFG
Output: “Yes” (ambiguous)/“No” (unambiguous)

Warning: Undecidable Problem Alert!
(Not only can you not do this, it is impossible
for any program to do this.) (We will cover undecidable

problems after Spring Break)

24Lecture 11: Parsimonious Parsing

Parsing

S → S + M | M

M → M * T | T

T → (S) | number

3 + 2 * 1

S

S M+

M T*

1T

2

M

T

3

D
e
riv

a
tio

n P
a
rs
in
g

Programming
languages
are (should be)
designed to make
parsing easy,
efficient, and
unambiguous.

5

25Lecture 11: Parsimonious Parsing

“Easy” and “Efficient”

• “Easy” - we can automate the
process of building a parser from a
description of a grammar

• “Efficient” – the resulting parser can
build a parse tree quickly (linear time
in the length of the input)

26Lecture 11: Parsimonious Parsing

Recursive Descent
Parsing

S → S + M | M

M → M * T | T

T → (S) | number
Parse() { S(); }
S() {
try { S(); expect(“+”); M(); }

catch { backup(); }
try { M(); } catch {backup(); }
error(); }

M() {
try { M(); expect(“*”); T(); } catch …
try { T(); } catch { backup(); }
error (); }

T() {
try { expect(“(“); S(); expect(“)”); } catch …;
try { number(); } catch …; }

Advantages:
• Easy to produce
and understand
• Can be done for
any CFG

Problems:
• Inefficient (might
not even finish)
• “Nondeterministic”

27Lecture 11: Parsimonious Parsing

LL(k) (Lookahead-Left)

• A CFG is an LL(k) grammar if it can
be parser deterministically with ≤
tokens lookahead

S → S + M | M

M → M * T | T

T → (S) | number

1 +

S → S + M

S → M

S → S + M

2

LL(1) grammar

28Lecture 11: Parsimonious Parsing

Look-ahead Parser
Parse() { S(); }
S() {
if (lookahead(1, “+”)) { S(); eat(“+”); M(); }
else { M();}

M() {
if (lookahead(1, “*”)) { M(); eat(“*”); T(); }
else { T(); } }

T() {
if (lookahead(0, “(“)) { eat(“(“); S(); eat(“)”); }
else { number();}

S → S + M | M

M → M * T | T

T → (S) | number

29Lecture 11: Parsimonious Parsing

JavaCC

• Input: Grammar specification

• Output: A Java program that is a
recursive descent parser for the
specified grammar

https://javacc.dev.java.net/

Doesn’t work for all CFGs: only for LL(k) grammars

30Lecture 11: Parsimonious Parsing

Language Classes

Regular Languages

Cont
ext-F

ree L
angu

ages

Vio
late

s P
um

pin
g

Lem
ma F

or
RLs

V
io
la
te
s

P
u
m
p
in
g
 L
e
m
m
a

Fo
r
C
FL
s

Described by DFA, NFA,
RegExp, RegGram

D
escribed by CFG

,

N
D
P
D
A

0n1n
0n1n2n

0n

w

ww

Dete
rminist

ic C
FLs

LL(k)
 Lang

uage
s

Described by LL(k)

Grammar

Java
Python

Scheme

6

31Lecture 11: Parsimonious Parsing

Next Week

• Monday (2): Office Hours

(Qi Mi in 226D)

• Monday (5:30): TA help session

• Tuesday’s class (Pieter Hooimeyer): starting
to get outside the yellow circle: using
grammars to solve security problems

• Wednesday (9:30am): Office Hours (Qi Mi
in 226D)

• Wednesday (6pm): TAs’ Exam Review

• Thursday: exam in class

