

Exam 1

- Problem 4c: Prove that the language $\left\{0^{n} 1^{n^{2}}\right\}$ is not context-free.

Pumping lemma for CFLs says
Lengths of strings in L : there must be some way of
$n=0 \quad 0+0^{2}=0 \quad$ picking $s=u v x y z$ such that
$n=1 \quad 1+1^{2}=2 \quad m=|v|+|y|>0$ and $u v^{i} x y^{i} z$ in L for
$n=2 \quad 2+2^{2}=6 \quad$ all i.
$n=3 \quad 3+3^{2}=12 \quad$ So, increasing i by 1 adds m
...
$n=\mathrm{k} \quad \mathrm{k}+\mathrm{k}^{2}$ symbols to the string, which must produce a string of a length that is not the length of a string in L.
Lecture 13: Turing Machine
8
Computer Science

Can it be done with 2 Stacks?

Can it be done with 2 Stacks?	
Leture 13: Turine mastines	

Simulating 3-DPDA with 2-DPDA

TM Computing Model

$$
\delta^{*}: \Gamma^{*} \times Q \times \Gamma^{*} \rightarrow \Gamma^{*} \times Q \times \Gamma^{*}
$$

The $q_{\text {accept }}$ and $q_{\text {reject }}$ states are final:

$$
\begin{aligned}
& \delta^{*}\left(L, q_{\text {accepp }}, R\right) \rightarrow\left(L, q_{\text {accept }}, R\right) \\
& \delta^{*}\left(L, q_{\text {reject }}, R\right) \rightarrow\left(L, q_{\text {reject }}, R\right)
\end{aligned}
$$

Lecture 13: Turing Machines 22 Computer Science

