
1

David EvansDavid Evans
http://www.cs.virginia.edu/evanshttp://www.cs.virginia.edu/evans

cs302: Theory of Computationcs302: Theory of Computation

University of VirginiaUniversity of Virginia

Computer ScienceComputer Science

Lecture 18: Lecture 18:

Important Undecidable Problems Important Undecidable Problems
(and what to do about them)(and what to do about them)

2Lecture 18: Important Undecidable Problems

Menu

• What does undecidability mean for problems

real people (not just CS theorists) care about?

• What do you do when your application’s

requirements require “solving” an

undecidable problem?

3Lecture 18: Important Undecidable Problems

Undecidability + Rice + Church-Turing

Undecidability: undecidable languages that

cannot be decided by any Turing Machine

Rice’s Theorem: all nontrivial properties about

the language of a TM are undecidable

Church-Turing Thesis: any mechanical computation

can be done by some TM

Conclusion: any nontrivial property about general

mechanical computations cannot be decided!

Language and Problems: any problem can be

restated are a language recognition problem

4Lecture 18: Important Undecidable Problems

Program Halting Problem

• Input: a program P in some programming

language

• Output: true if P terminates; false if P runs

forever.

5Lecture 18: Important Undecidable Problems

Examples

halts(“2+2”)

halts(“def f(n):

if n==0: return 1

else: return n * f(n-1)

f(10)”)

halts(“def f(n):

if n==0: return 1

else: return n * f(n-1)

f(10.5)”)

”)

True

True

False

6Lecture 18: Important Undecidable Problems

Tougher Example

halts(“

def isPerfectNumber(n): # n is perfect if factors sum to n

divs = findDivisors(n)

return n == sum(divs)

i = 3

while not isPerfectNumber (i): i = i + 2

print i”)

Note: it is unknown where an odd perfect

number exists. (Numbers up to 10300 have

been tried without finding one yet.)

Unknown

2

7Lecture 18: Important Undecidable Problems

If you had halts, you could prove or disprove

nearly every open mathematical problem!

– Does an odd perfect number exist?

– Reimann hypothesis: The real part of any non-trivial

zero of the Riemann zeta function is ½.

– Goldbach conjecture: Every number > 2 is the sum of

three primes (including 1).

– Poincaré conjecture: Every simply connected closed

three-manifold is homeomorphic to the three-sphere.

– ...

This suggests it is unlikely halts exists...but doesn’t prove it (yet).

8Lecture 18: Important Undecidable Problems

More Convincing Non-Existence Proof

def paradox():

if halts(“paradox()”):

while True: print “You lose”

else:

return “You lose”

If halts(“paradox()”) is True: paradox() loops forever

If halts(“paradox()”) is False: paradox() halts

Neither option makes sense, so halts must not exist!

9Lecture 18: Important Undecidable Problems

Recall from Lecture 16...

Define D (<M>) = Construct a TM that:

Outputs the opposite of the result of simulating

H on input <M, <M>>

Assume there exists some TM H that decides ATM.

If D accepts <D>:

H(D, <D>) accepts and D(<D>) rejects

If D rejects <D>,

H(D, <D>) rejects and D(<D>) accepts

Whatever D does, it must do the opposite, so there is a contraction!

10Lecture 18: Important Undecidable Problems

Alternate Proof: Reduction

• A Python procedure that solves halts must not
exist, since if it did we could:

– Write a TM simulator in Python:

def simulateTM(M,w):

simulates M on input w

– Determine if a TM M halts on w using halts:

halts(“simulateTM(M,w)”)

• But, we know HALTTM is undecidable. Hence,
halts for Python must not exist.

11Lecture 18: Important Undecidable Problems

Does this work for Java?

12Lecture 18: Important Undecidable Problems

Universal Programming Language

• Definition: a programming language that can

describe every algorithm.

• Equivalently: a programming language that

can simulate every Turing Machine.

• Equivalently: a programming language in

which you can implement a Universal Turing

Machine.

3

13Lecture 18: Important Undecidable Problems

Which of these are Universal

Programming Languages?

Python

Java

C++

C#
HTML

SQL

Scheme

Ruby

COBOL

Fortran

JavaScriptPostScript

PLAN

BASIC

x86

14Lecture 18: Important Undecidable Problems

Proofs

• BASIC, C, C++, C#, Fortran, Java, JavaScript,

PostScript, Python, Ruby, Scheme, etc.:

– Proof: implement a TM simulator in the PL

• HTML is not universal:

– Proof: show some algorithm that cannot be implemented

in HTML

– Easy choice: an infinite loop

• PLAN (Packet Language for Active Networks):

– Designed to be non-universal: resource-constrained

language

15Lecture 18: Important Undecidable Problems

Why is it impossible for a

programming language to be

both universal

and resource-constrained?

Resource-constrained means it is possible to determine an

upper bound on the resources any program in the language

can consume.

16Lecture 18: Important Undecidable Problems

All universal programming

language are equivalent in power:

they can all simulate a TM, which

can carry out any mechanical

algorithm.

17Lecture 18: Important Undecidable Problems

Why so many programming

languages?

18Lecture 18: Important Undecidable Problems

Proliferation of Universal PLs

• “Aesthetics”

– Some people like :=, others prefer =.

– Some people think whitespace shouldn’t matter

(e.g., Java), others think programs should be

formatted like they mean (e.g., Python)

– Some people like goto, others like throw.

• Expressiveness vs. “Truthiness”

– How much you can say with a little code vs. how

likely it is your code means what you think it does

4

19Lecture 18: Important Undecidable Problems

Programming Language Design Space

E
x
p
re

ss
iv

e
n
e
ss

“Truthiness”

Scheme

Python

Java

C++
C

low

high

Spec#

Ada

strict typing,

static

BASIC

more mistake prone less mistake prone

// Purpose: say hello!
public class HelloWorld {

public static void main(String[] args) {

System.out.println ("Hello!");
}

}

print ("Hello!")

(display “Hello!”)

20Lecture 18: Important Undecidable Problems

Are any Important

Problems Undecidable?

21Lecture 18: Important Undecidable Problems

Virus Detection

• Input: a program P

• Output: True if executing P would cause

a file on the host computer to be

“infected”; False otherwise.

Rough Proof:

def halts(P):

return isVirus(“removePossibleInfections(P)

infectFile()”)

22Lecture 18: Important Undecidable Problems

Therefore: Anti-Virus programs cannot exist!

“The Art of Computer Virus Research

and Defense”

Peter Szor, Symantec

23Lecture 18: Important Undecidable Problems

Vulnerability Detection

• Input: a program P

• Output: True if there is some input w, such

that running P on w leads to a security

compromise; False otherwise.

Rough Proof:

def haltsOnInput(P,w): # we know this doesn’t exist either

return isVulnerable(“P(w)

compromiseSecurity()”)

24Lecture 18: Important Undecidable Problems

Example: Morris Internet Worm (1988)

• P = fingerd

– Program used to query user status (running on most

Unix servers)

• isVulnerable(P)?

Yes, for w = “nop400 pushl $68732f pushl $6e69622f

movl sp,r10 pushl $0 pushl $0 pushl r10 pushl $3 movl

sp,ap chmk $3b”

– Worm infected several thousand computers (~10% of

Internet in 1988)

5

25Lecture 18: Important Undecidable Problems

Impossibility of Vulnerability Detection

26Lecture 18: Important Undecidable Problems

“Solving” Undecidable Problems
• Undecidable means there is no program that

1. Always gives the correct answer, and

2. Always terminates

• Must give up one of these:

– Giving up #2 is not acceptable in most cases

– Must give up #1: none of the anti-virus or

vulnerability detection products are always correct

• Or change the problem

– e.g., detect file infections during an execution, make

resilient execution environments, etc.

27Lecture 18: Important Undecidable Problems

Actual isVirus Programs
• Sometimes give the wrong answer:

– “False positive”: say P is a virus when it isn’t

– “False negative”: say P is safe when it is

• Database of known viruses: if P matches one of these, it

is a virus

• Clever virus authors can make viruses that change each

time they propagate

– It is undecidable to determine if a given program is the same

as a known virus

– Emulate program for a limited number of steps; if it doesn’t

do anything bad, assume it is safe

28Lecture 18: Important Undecidable Problems

Recap
• If you can simulate a Turing Machine with

programming language PL, it is a universal

programming language

• There is no algorithm for deciding halts for P ∈ PL: if
there was, we could decide ATM.

• There is no way to determine in general if P ∈ PL is a
virus, or a program containing vulnerabilities, or any
interesting property…

• We can build algorithms that get it right some of the
time (and this can be valuable).

PS5 is due Tuesday

