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• Formalism 

• Abstract Problems

• Language Problems

• Computation

• Computability vs. Decidability

Review of the Turing Machine

(Q;¡;§; ±; qstart; qaccept; qreject)

Today we are looking at a completely different 

formal computation model – the λ-Calculus!
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Calculus

• What is calculus?

– Calculus is a branch of mathematics that 
includes the study of limits, derivatives, 

integrals, and infinite series.

• Examples

The product rule

The chain rule
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Real Definition

• Calculus is just a bunch of rules for 

manipulating symbols.

• People can give meaning to those 

symbols, but that’s not part of the calculus.

• Differential calculus is a bunch of rules for 
manipulating symbols.  There is an 

interpretation of those symbols 
corresponds with physics, geometry, etc.
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λ Calculus Formalism (Grammar)

• Key words: λ . (       )        terminals

• term  → variable 

| ( term )

| λ variable . term

| term term

Humans can give meaning to those 
symbols in a way that corresponds 

to computations.
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λ Calculus Formalism (rules)

• Rules

α-reduction (renaming)

λy. M ⇒α λv. (M [y v])

where v does not occur in M.

β-reduction (substitution)

(λx. M)N ⇒ β M [ x N ]

a

a

Replace all x’s in M

with N

Try Example 1, 2, & 
3 on the notes now!
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Free and Bound variables

• In λ Calculus all variables are local to function 
definitions

• Examples

– λx.xy

x is bound, while y is free;

– (λx.x)(λy.yx)

x is bound in the first function, but free in the second function

– λx.(λy.yx) 

x and y are both bound variables. (it can be abbreviated as 

λxy.yx ) 
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Be careful about β-Reduction

• (λx. M)N ⇒ M [ x N ]a

Replace all x’s in M
with N

If the substitution would bring a free variable 
of N in an expression where this variable 
occurs bound, we rename the bound variable 
before the substitution.

Try Example 4 on 
the notes now!
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Computing Model for λ Calculus

• redex:  a term of the form (λx. M)N 

Something that can be β-reduced

• An expression is in normal form if it 
contains no redexes (redices).

• To evaluate a lambda expression, keep 
doing reductions until you get to normal 

form.

β-Reduction represents all the computation 
capability of Lambda calculus.
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Another exercise

(λ f. ((λ x. f (xx)) (λ x. f (xx)))) (λz.z)
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Possible Answer

(λ f. ((λ x.f (xx)) (λ x. f (xx)))) (λz.z)

→β (λx.(λz.z)(xx)) (λ x. (λz.z)(xx))

→β (λz.z) (λ x.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λx.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λz.z) (λ x.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λx.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β ...
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Alternate Answer

(λ f. ((λ x.f (xx)) (λ x. f (xx)))) (λz.z)

→β (λx.(λz.z)(xx)) (λ x. (λz.z)(xx))

→β (λx.xx) (λx.(λz.z)(xx))

→β (λx.xx) (λx.xx)

→β (λx.xx) (λx.xx)

→β ...
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Be Very Afraid!

• Some λ-calculus terms can be β-reduced 
forever!

• The order in which you choose to do the 

reductions might change the result!
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Take on Faith

• All ways of choosing reductions that reduce 
a lambda expression to normal form will 

produce the same normal form (but some 
might never produce a normal form).

• If we always apply the outermost lambda 

first, we will find the normal form if there is 
one.

– This is normal order reduction – corresponds to 
normal order (lazy) evaluation
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Alonzo Church (1903~1995)

Lambda Calculus

Church-Turing thesis 

If an algorithm (a procedure that 

terminates) exists then there is an 

equivalent Turing Machine or 

applicable λ-function for that 

algorithm. 
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Alan M. Turing (1912~1954)

• Turing Machine

• Turing Test

• Head of Hut 8

Advisor: 

Alonzo Church
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Equivalence in Computability

• λ Calculus   ↔ Turing Machine

– (1) Everything computable by λ Calculus can 
be computed using the Turing Machine.

– (2) Everything computable by the Turing 
Machine can be computed with λ Calculus.
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Simulate λ Calculus with TM

• The initial tape is filled with the initial λ
expression

• Finite number of reduction rules can be 
implemented by the finite state automata 
in the Turing Machine

• Start the Turing Machine; it either stops –
ending with the λ expression on tape in 

normal form, or continues forever – the β-
reductions never ends.
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WPI hacker implemented it on Z8 
microcontroller

On Zilog
Z8 Encore 
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λ Calculus in a Can

• Project LambdaCan

Refer to 

http://alum.wpi.edu/~tfraser/Software/Arduino
/lambdacan.html for instructions to build your 

own λ-can!
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Equivalence in Computability

• λ Calculus   ↔ Turing Machine

– (1) Everything computable by λ Calculus can 
be computed using the Turing Machine.

– (2) Everything computable by the Turing 
Machine can be computed with λ Calculus.
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Simulate TM with λ Calculus

• Simulating the Universal Turing Machine
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1

Start

HALT

), X, L

2: look 
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

Read/Write Infinite Tape
Mutable Lists

Finite State Machine
Numbers

Processing
Way to make decisions (if)
Way to keep going
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Making Decisions

• What does decision mean?

– Choosing different strategies depending on 
the predicate

• What does True mean?

– True is something that when used as the first 

operand of if, makes the value of the if the 
value of its second operand:

if T M N → M

if F M N → N
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Finding the Truth

if ≡ λpca . pca

T ≡ λxy. x

F ≡ λxy. y

if T M N

((λpca . pca) (λxy. x)) M N

→β (λca . (λxy. x) ca)) M N

→β →β (λxy. x) M N

→β (λy. M )) N →β M

Try out reducing 
(if F T F) on your 
notes now!
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and and or?

• and ≡ λxy.(if x y F)

→β λxy.((λpca.pca) x y F)

→β λxy.(x y F)

→β λxy.(x y (λuv.v))

• or ≡ λxy.(if x T y)

much more human-readable!
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Simulate TM with λ Calculus

• Simulating the Universal Turing Machine
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What is 11?

eleven

11

elf

十一十一十一十一

одиннадцатьодиннадцатьодиннадцатьодиннадцать

أ�� �� 

once

イレブンイレブンイレブンイレブン

onze

undici

XI
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Numbers

• The natural numbers had their origins in 

the words used to count things

• Numbers as abstractions

pred (succ N) → N

succ (pred N) → N

pred (0) → 0
succ (zero) → 1
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Defining Numbers

• In Church numerals, n is represented as a 

function that maps any function f to its n-
fold composition.

• 0 ≡ λ f x. x

• 1 ≡ λ f x. f (x)

• 2 ≡ λ f x. f (f (x))

30Lecture 20: λ Calculus

Defining succ and pred

• succ ≡ λ n f x. f (n f x)

• pred ≡ λ n f x. n (λgh. h (g f )) (λu. x) (λu. u) 

• succ 1 →β ?
We’ll see later how to deduce 
the term for pred using 
knowledge about pairs.
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Simulate TM with λ Calculus

• Simulating the Universal Turing Machine
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Defining List

• List is either

– (1) null; or

– (2) a pair whose second element is a list.

How to define null and pair then?
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null, null?, pair, first, rest

null? null → T

null? ( pair M N ) → F

first ( pair M N ) → M

rest ( pair M N) → N
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null and null?

• null ≡ λx.T

• null? ≡ λx.(x λyz.F)

• null? null →β (λx.(x λyz.F)) (λx. T)

→β (λx. T)(λyz.F)

→β T
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Defining Pair

• A pair [a, b] = (pair a b) is represented as
λ z .z a b

• first ≡ λp.p T

• rest ≡ λp.p F

• pair ≡ λ x y z .z x y

• first (cons M N) 

→β ( λp.p T ) (pair M N)

→β (pair M N) T →β (λ z .z M N) T
→β T M N
→β M
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Defining  pred

• C ≡ λpz.(z (succ ( first p )) ( first p ) )

Obviously, C [n, n-1] →β [n+1, n], i.e., C
turns a pair [n, n-1] to be [n+1, n].

• pred ≡ rest (λn . n C (λz.z 0 0))
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Simulate TM with λ Calculus

• Simulating the Universal Turing Machine
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Simulate Recursion

(λ f. ((λ x.f (xx)) (λ x. f (xx)))) (λz.z)

→β (λx.(λz.z)(xx)) (λ x. (λz.z)(xx))

→β (λz.z) (λ x.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λx.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λz.z) (λ x.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λx.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β ... This should give you some belief that we 
might be able to do it.  We won’t cover 

the details of why this works in this class. 
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Simulate TM with λ Calculus

• Simulating the Universal Turing Machine
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Introducing Scheme

• Scheme is a dialect of LISP programming 
language

• Computation in Scheme is a little higher level 

than in λ-Calculus in the sense that the more 
“human-readable” primitives (like T, F, if, 
natural numbers, null, null?, and cons, etc) 
have already been defined for you.

• The basic reduction rules are exactly the same.
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A Turing simulator in Scheme
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TM Simulator demonstration

A Turing Machine recognizing anbn Encoding of the FSM in Scheme.
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Summary: TM and λ Calculus

• λ Calculus emphasizes the use of 

transformation rules and does not care 
about the actual machine implementing 

them.

• It is an approach more related to software 

than to hardware

Many slides and examples are adapted 
from materials developed for Univ. of 
Virginia CS150 by David Evans.


