

Calculus

-What is calculus?

- Calculus is a branch of mathematics that includes the study of limits, derivatives, integrals, and infinite series.
- Examples

\[\)| $d(u v)=v(d u)+u(d v)$ | The product rule |
| :--- | :--- |
| $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$ | The chain rule |
| Lecture 20: $\lambda \text { Calculus }$ | |\(\quad C Computer Science

\]

Review of the Turing Machine

- Formalism $\left(Q, \Gamma, \Sigma, \delta, q_{\text {start }}, q_{\text {accept }}, q_{\text {reject }}\right)$
- Abstract Problems
- Language Problems
- Computation
- Computability vs. Decidability

Today we are looking at a completely different formal computation model - the λ-Calculus!

Real Definition

- Calculus is just a bunch of rules for manipulating symbols.
- People can give meaning to those symbols, but that's not part of the calculus.
- Differential calculus is a bunch of rules for manipulating symbols. There is an interpretation of those symbols corresponds with physics, geometry, etc.

λ Calculus Formalism (rules)

- Rules
α-reduction (renaming)
$\lambda y . M \Rightarrow_{\alpha} \lambda v .(M[y \mapsto v])$
where v does not occur in M.
β-reduction (substitution)

Free and Bound variables

- In λ Calculus all variables are local to function definitions
- Examples
- $\lambda x . x y$
x is bound, while y is free;
$-(\lambda x \cdot x)(\lambda y \cdot y x)$
x is bound in the first function, but free in the second function
$-\lambda x .(\lambda y . y x)$
x and y are both bound variables. (it can be abbreviated as $\lambda x y . y x)$

Computing Model for λ Calculus

- redex: a term of the form $(\lambda x . M) N$

Something that can be β-reduced

- An expression is in normal form if it contains no redexes (redices).
- To evaluate a lambda expression, keep doing reductions until you get to normal form.
β-Reduction represents all the computation capability of Lambda calculus.

Possible Answer

$(\lambda f .((\lambda x . f(x x))(\lambda x . f(x x))))(\lambda z . z)$
$\rightarrow_{\beta}(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x))$
$\rightarrow_{\beta}(\lambda z . z)(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x))$
$\rightarrow_{\beta}(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x))$
$\rightarrow_{\beta}(\lambda z . z)(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x))$
$\rightarrow_{\beta}(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x))$
$\rightarrow_{\beta} \cdots$

Another exercise

$(\lambda f .((\lambda x . f(x x))(\lambda x . f(x x))))(\lambda z . z)$
Lecture 20: λ Calculus 10 Computer Science

Alternate Answer

$(\lambda f .((\lambda x . f(x x))(\lambda x . f(x x))))(\lambda z . z)$
$\rightarrow_{\beta}(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x))$
$\rightarrow_{\beta}(\lambda x . x x)(\lambda x .(\lambda z . z)(x x))$
$\rightarrow_{\beta}\left(\lambda_{x} . x x\right)\left(\lambda x_{.} x x\right)$
$\rightarrow_{\beta}(\lambda x . x x)(\lambda x . x x)$
$\rightarrow_{\beta} \ldots$

Be Very Afraid!

- Some λ-calculus terms can be β-reduced forever!
- The order in which you choose to do the reductions might change the result!

Alonzo Church (1903~1995)

Equivalence in Computability

- λ Calculus \leftrightarrow Turing Machine
- (1) Everything computable by λ Calculus can be computed using the Turing Machine.
- (2) Everything computable by the Turing Machine can be computed with λ Calculus.

Take on Faith

- All ways of choosing reductions that reduce a lambda expression to normal form will produce the same normal form (but some might never produce a normal form).
- If we always apply the outermost lambda first, we will find the normal form if there is one.
- This is normal order reduction - corresponds to normal order (lazy) evaluation

Alan M. Turing (1912~1954)

Simulate λ Calculus with TM

- The initial tape is filled with the initial λ expression
- Finite number of reduction rules can be implemented by the finite state automata in the Turing Machine
- Start the Turing Machine; it either stops ending with the λ expression on tape in normal form, or continues forever - the β reductions never ends.

Equivalence in Computability

- λ Calculus \leftrightarrow Turing Machine
- (1) Everything computable by λ Calculus can be computed using the Turing Machine.
- (2) Everything computable by the Turing Machine can be computed with λ Calculus.

$$
\begin{aligned}
& \text { if T } M N \rightarrow M \\
& \text { if } F M N \rightarrow N
\end{aligned}
$$

- What does True mean?
- True is something that when used as the first operand of if, makes the value of the if the value of its second operand:

23 . . Computer Science

Simulate TM with λ Calculus

- Simulating the Universal Turing Machine

Finding the Truth
$\mathbf{i f} \equiv \lambda p c a . p c a$
$\mathbf{T} \equiv \lambda x y . x$
$\mathbf{F} \equiv \lambda x y . y$
Lecture 20: λ Calculus
20 Computer Science

if $\mathbf{T} \boldsymbol{M} \boldsymbol{N}$

$((\lambda p c a \cdot p c a)(\lambda x y . x)) M N$
$\left.\rightarrow_{\beta}(\lambda c a .(\lambda x y . x) c a)\right) M N$
$\rightarrow_{\beta} \rightarrow_{\beta}(\lambda x y . x) \boldsymbol{M} \boldsymbol{N} \quad$ Try out reducing $\left.\rightarrow_{\beta}(\lambda y . M)\right) N \rightarrow_{\beta} M \quad$ (if F T F) on your notes now!

λ Calculus in a Can

- Project LambdaCan

Refer to
http://alum.wpi.edu/~tfraser/Software/Arduino /lambdacan.html for instructions to build your own λ-can!

and and or？

－and $\equiv \lambda x y$ ．（if $x y \mathbf{F})$ much more human－readable！
$\rightarrow_{\beta} \lambda x y .((\lambda p c a . p c a)$ x y $\mathbf{F})$
$\rightarrow_{\beta} \lambda x y .(x y \mathbf{F})$
$\rightarrow_{\beta} \lambda x y .(x y(\lambda u v . v))$
－or $\equiv \lambda x y$ ．（if $x \mathbf{T} y)$

Simulate TM with λ Calculus

－Simulating the Universal Turing Machine

Read／Write Infinite Tape Mutable Lists
Finite State Machine
Numbers
Processing
\checkmark Way to make decisions（if）
Way to keep going

Numbers

－The natural numbers had their origins in the words used to count things
－Numbers as abstractions
pred $($ succ $N) \rightarrow N$
succ $($ pred $N) \rightarrow N$
pred（0）$\rightarrow 0$
succ（zero）$\rightarrow \mathbf{1}$

Defining Numbers

－In Church numerals， \boldsymbol{n} is represented as a function that maps any function f to its n－ fold composition．
－ $\mathbf{0} \equiv \lambda f x . x$
－ $\mathbf{1} \equiv \lambda f x . f(x)$
－ $2 \equiv \lambda f x . f(f(x))$

Defining succ and pred

－succ $\equiv \lambda n f x . f(n f x)$
－pred $\equiv \lambda n f x . n(\lambda g h . h(g f))(\lambda u . x)(\lambda u . u)$

$$
\operatorname{pred}(n)= \begin{cases}0 & \text { if } n=0 \\ n-1 & \text { otherwise }\end{cases}
$$

－succ $1 \rightarrow_{\beta}$ ？
We＇ll see later how to deduce the term for pred using knowledge about pairs．

Defining List

- List is either
- (1) null; or
- (2) a pair whose second element is a list.

How to define null and pair then?
Lecture 20: λ Calculus 32 Computer Science

null, null?, pair, first, rest

```
null? null }->\mathbf{T
null? (pair MN)}->\mathbf{F
first ( pair MN) }->
rest (pair MN) }M
```

- null $\equiv \lambda x$. T
- null? $\equiv \lambda x .(x \lambda y z . F)$
- null? null $\rightarrow_{\beta}(\lambda x .(x \lambda y z . \mathbf{F}))(\lambda x . \mathbf{T})$

$$
\rightarrow_{\beta}(\lambda x . \mathbf{T})(\lambda y z . \mathbf{F})
$$

- first (cons M N)

Defining Pair

- A pair $[a, b]=($ pair $a b)$ is represented as
$\lambda z . z a b$
- first $\equiv \lambda p . p \mathbf{T}$
- rest $\equiv \lambda p . p \mathbf{F}$
- pair ミ $\lambda x y z . z x y$

null and null?

$\rightarrow_{\beta} \mathbf{T}$
Lecture 20: λ Calculus 34 Computer Science

Defining pred

- $\mathbf{C} \equiv \lambda p z .(z(\boldsymbol{s u c c}(\boldsymbol{f i r s t} p))(\boldsymbol{f i r s t} p))$

Obviously, $\mathbf{C}[\mathbf{n}, \mathbf{n}-1] \rightarrow_{\beta}[\mathbf{n + 1}, \mathrm{n}]$, i.e., \mathbf{C} turns a pair $[\mathbf{n}, \mathrm{n}-1]$ to be $[\mathrm{n}+1, \mathrm{n}]$.

- $\operatorname{pred} \equiv \operatorname{rest}(\lambda n . n \mathbf{C}(\lambda z . z 00))$
$\rightarrow_{\beta}(\lambda p . p \mathbf{T})($ pair $M \mathrm{~N})$
$\rightarrow_{\beta}(\boldsymbol{p a i r} M \mathrm{~N}) \mathbf{T} \rightarrow_{\beta}(\lambda z . z \mathrm{M} \mathrm{N}) \mathbf{T}$
\rightarrow_{β} TMN
$\rightarrow{ }_{\beta} \mathrm{M}$

Simulate Recursion

$(\lambda f .((\lambda x . f(x x))(\lambda x . f(x x))))(\lambda z . z)$	
$\rightarrow_{\beta}(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x))$	
$\rightarrow_{\beta}(\lambda z . z)(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x))$	
$\rightarrow_{\beta}(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x))$	
$\rightarrow_{\beta}(\lambda z . z)(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x))$	
$\rightarrow_{\beta}(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x))$	
$\rightarrow_{\beta} \ldots$	This should give you some belief that we might be able to do it. We won't cover the details of why this works in this class.
atalus	

(Introducing Scheme

- Scheme is a dialect of LISP programming language
- Computation in Scheme is a little higher level than in λ-Calculus in the sense that the more "human-readable" primitives (like \mathbf{T}, \mathbf{F}, if, natural numbers, null, null?, and cons, etc) have already been defined for you.
- The basic reduction rules are exactly the same.
Lecture 20: λ Calculus 40 Computer Science

TM Simulator demonstration

A Turing Machine recognizing $a^{n} b^{n}$
Encoding of the FSM in Scheme

Summary: TM and λ Calculus

- λ Calculus emphasizes the use of transformation rules and does not care about the actual machine implementing them.
- It is an approach more related to software than to hardware

Many slides and examples are adapted from materials developed for Univ. of Virginia CS150 by David Evans.

