
1

Lecture 20: λ Calculus

λ Calculus &

Computability

Yan Huang

Dept. of Comp. Sci.

University of Virginia

2Lecture 20: λ Calculus

• Formalism

• Abstract Problems

• Language Problems

• Computation

• Computability vs. Decidability

Review of the Turing Machine

(Q;¡;§; ±; qstart; qaccept; qreject)

Today we are looking at a completely different

formal computation model – the λ-Calculus!

3Lecture 20: λ Calculus

Calculus

• What is calculus?

– Calculus is a branch of mathematics that
includes the study of limits, derivatives,

integrals, and infinite series.

• Examples

The product rule

The chain rule

4Lecture 20: λ Calculus

Real Definition

• Calculus is just a bunch of rules for

manipulating symbols.

• People can give meaning to those

symbols, but that’s not part of the calculus.

• Differential calculus is a bunch of rules for
manipulating symbols. There is an

interpretation of those symbols
corresponds with physics, geometry, etc.

5Lecture 20: λ Calculus

λ Calculus Formalism (Grammar)

• Key words: λ . () terminals

• term → variable

| (term)

| λ variable . term

| term term

Humans can give meaning to those
symbols in a way that corresponds

to computations.

6Lecture 20: λ Calculus

λ Calculus Formalism (rules)

• Rules

α-reduction (renaming)

λy. M ⇒α λv. (M [y v])

where v does not occur in M.

β-reduction (substitution)

(λx. M)N ⇒ β M [x N]

a

a

Replace all x’s in M

with N

Try Example 1, 2, &
3 on the notes now!

2

7Lecture 20: λ Calculus

Free and Bound variables

• In λ Calculus all variables are local to function
definitions

• Examples

– λx.xy

x is bound, while y is free;

– (λx.x)(λy.yx)

x is bound in the first function, but free in the second function

– λx.(λy.yx)

x and y are both bound variables. (it can be abbreviated as

λxy.yx)

8Lecture 20: λ Calculus

Be careful about β-Reduction

• (λx. M)N ⇒ M [x N]a

Replace all x’s in M
with N

If the substitution would bring a free variable
of N in an expression where this variable
occurs bound, we rename the bound variable
before the substitution.

Try Example 4 on
the notes now!

9Lecture 20: λ Calculus

Computing Model for λ Calculus

• redex: a term of the form (λx. M)N

Something that can be β-reduced

• An expression is in normal form if it
contains no redexes (redices).

• To evaluate a lambda expression, keep
doing reductions until you get to normal

form.

β-Reduction represents all the computation
capability of Lambda calculus.

10Lecture 20: λ Calculus

Another exercise

(λ f. ((λ x. f (xx)) (λ x. f (xx)))) (λz.z)

11Lecture 20: λ Calculus

Possible Answer

(λ f. ((λ x.f (xx)) (λ x. f (xx)))) (λz.z)

→β (λx.(λz.z)(xx)) (λ x. (λz.z)(xx))

→β (λz.z) (λ x.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λx.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λz.z) (λ x.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λx.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β ...

12Lecture 20: λ Calculus

Alternate Answer

(λ f. ((λ x.f (xx)) (λ x. f (xx)))) (λz.z)

→β (λx.(λz.z)(xx)) (λ x. (λz.z)(xx))

→β (λx.xx) (λx.(λz.z)(xx))

→β (λx.xx) (λx.xx)

→β (λx.xx) (λx.xx)

→β ...

3

13Lecture 20: λ Calculus

Be Very Afraid!

• Some λ-calculus terms can be β-reduced
forever!

• The order in which you choose to do the

reductions might change the result!

14Lecture 20: λ Calculus

Take on Faith

• All ways of choosing reductions that reduce
a lambda expression to normal form will

produce the same normal form (but some
might never produce a normal form).

• If we always apply the outermost lambda

first, we will find the normal form if there is
one.

– This is normal order reduction – corresponds to
normal order (lazy) evaluation

15Lecture 20: λ Calculus

Alonzo Church (1903~1995)

Lambda Calculus

Church-Turing thesis

If an algorithm (a procedure that

terminates) exists then there is an

equivalent Turing Machine or

applicable λ-function for that

algorithm.

16Lecture 20: λ Calculus

Alan M. Turing (1912~1954)

• Turing Machine

• Turing Test

• Head of Hut 8

Advisor:

Alonzo Church

17Lecture 20: λ Calculus

Equivalence in Computability

• λ Calculus ↔ Turing Machine

– (1) Everything computable by λ Calculus can
be computed using the Turing Machine.

– (2) Everything computable by the Turing
Machine can be computed with λ Calculus.

18Lecture 20: λ Calculus

Simulate λ Calculus with TM

• The initial tape is filled with the initial λ
expression

• Finite number of reduction rules can be
implemented by the finite state automata
in the Turing Machine

• Start the Turing Machine; it either stops –
ending with the λ expression on tape in

normal form, or continues forever – the β-
reductions never ends.

4

19Lecture 20: λ Calculus

WPI hacker implemented it on Z8
microcontroller

On Zilog
Z8 Encore

20Lecture 20: λ Calculus

λ Calculus in a Can

• Project LambdaCan

Refer to

http://alum.wpi.edu/~tfraser/Software/Arduino
/lambdacan.html for instructions to build your

own λ-can!

21Lecture 20: λ Calculus

Equivalence in Computability

• λ Calculus ↔ Turing Machine

– (1) Everything computable by λ Calculus can
be computed using the Turing Machine.

– (2) Everything computable by the Turing
Machine can be computed with λ Calculus.

22Lecture 20: λ Calculus

Simulate TM with λ Calculus

• Simulating the Universal Turing Machine

z z z z z z z z z z z z z zz z z z

1

Start

HALT

), X, L

2: look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

Read/Write Infinite Tape
Mutable Lists

Finite State Machine
Numbers

Processing
Way to make decisions (if)
Way to keep going

23Lecture 20: λ Calculus

Making Decisions

• What does decision mean?

– Choosing different strategies depending on
the predicate

• What does True mean?

– True is something that when used as the first

operand of if, makes the value of the if the
value of its second operand:

if T M N → M

if F M N → N

24Lecture 20: λ Calculus

Finding the Truth

if ≡ λpca . pca

T ≡ λxy. x

F ≡ λxy. y

if T M N

((λpca . pca) (λxy. x)) M N

→β (λca . (λxy. x) ca)) M N

→β →β (λxy. x) M N

→β (λy. M)) N →β M

Try out reducing
(if F T F) on your
notes now!

5

25Lecture 20: λ Calculus

and and or?

• and ≡ λxy.(if x y F)

→β λxy.((λpca.pca) x y F)

→β λxy.(x y F)

→β λxy.(x y (λuv.v))

• or ≡ λxy.(if x T y)

much more human-readable!

26Lecture 20: λ Calculus

Simulate TM with λ Calculus

• Simulating the Universal Turing Machine

z z z z z z z z z z z z z zz z z z

1

Start

HALT

), X, L

2: look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

Read/Write Infinite Tape
Mutable Lists

Finite State Machine
Numbers

Processing
Way to make decisions (if)
Way to keep going

X

27Lecture 20: λ Calculus

What is 11?

eleven

11

elf

十一十一十一十一

одиннадцатьодиннадцатьодиннадцатьодиннадцать

أ�� ��

once

イレブンイレブンイレブンイレブン

onze

undici

XI

28Lecture 20: λ Calculus

Numbers

• The natural numbers had their origins in

the words used to count things

• Numbers as abstractions

pred (succ N) → N

succ (pred N) → N

pred (0) → 0
succ (zero) → 1

29Lecture 20: λ Calculus

Defining Numbers

• In Church numerals, n is represented as a

function that maps any function f to its n-
fold composition.

• 0 ≡ λ f x. x

• 1 ≡ λ f x. f (x)

• 2 ≡ λ f x. f (f (x))

30Lecture 20: λ Calculus

Defining succ and pred

• succ ≡ λ n f x. f (n f x)

• pred ≡ λ n f x. n (λgh. h (g f)) (λu. x) (λu. u)

• succ 1 →β ?
We’ll see later how to deduce
the term for pred using
knowledge about pairs.

6

31Lecture 20: λ Calculus

Simulate TM with λ Calculus

• Simulating the Universal Turing Machine

z z z z z z z z z z z z z zz z z z

1

Start

HALT

), X, L

2: look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

Read/Write Infinite Tape
Mutable Lists

Finite State Machine
Numbers

Processing
Way to make decisions (if)
Way to keep going

X

X

32Lecture 20: λ Calculus

Defining List

• List is either

– (1) null; or

– (2) a pair whose second element is a list.

How to define null and pair then?

33Lecture 20: λ Calculus

null, null?, pair, first, rest

null? null → T

null? (pair M N) → F

first (pair M N) → M

rest (pair M N) → N

34Lecture 20: λ Calculus

null and null?

• null ≡ λx.T

• null? ≡ λx.(x λyz.F)

• null? null →β (λx.(x λyz.F)) (λx. T)

→β (λx. T)(λyz.F)

→β T

35Lecture 20: λ Calculus

Defining Pair

• A pair [a, b] = (pair a b) is represented as
λ z .z a b

• first ≡ λp.p T

• rest ≡ λp.p F

• pair ≡ λ x y z .z x y

• first (cons M N)

→β (λp.p T) (pair M N)

→β (pair M N) T →β (λ z .z M N) T
→β T M N
→β M

36Lecture 20: λ Calculus

Defining pred

• C ≡ λpz.(z (succ (first p)) (first p))

Obviously, C [n, n-1] →β [n+1, n], i.e., C
turns a pair [n, n-1] to be [n+1, n].

• pred ≡ rest (λn . n C (λz.z 0 0))

7

37Lecture 20: λ Calculus

Simulate TM with λ Calculus

• Simulating the Universal Turing Machine

z z z z z z z z z z z z z zz z z z

1

Start

HALT

), X, L

2: look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

Read/Write Infinite Tape
Mutable Lists

Finite State Machine
Numbers

Processing
Way to make decisions (if)
Way to keep going

X

X

X

38Lecture 20: λ Calculus

Simulate Recursion

(λ f. ((λ x.f (xx)) (λ x. f (xx)))) (λz.z)

→β (λx.(λz.z)(xx)) (λ x. (λz.z)(xx))

→β (λz.z) (λ x.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λx.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λz.z) (λ x.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λx.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β ... This should give you some belief that we
might be able to do it. We won’t cover

the details of why this works in this class.

39Lecture 20: λ Calculus

Simulate TM with λ Calculus

• Simulating the Universal Turing Machine

z z z z z z z z z z z z z zz z z z

1

Start

HALT

), X, L

2: look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

Read/Write Infinite Tape
Mutable Lists

Finite State Machine
Numbers

Processing
Way to make decisions (if)
Way to keep going

X

X

X

X

40Lecture 20: λ Calculus

Introducing Scheme

• Scheme is a dialect of LISP programming
language

• Computation in Scheme is a little higher level

than in λ-Calculus in the sense that the more
“human-readable” primitives (like T, F, if,
natural numbers, null, null?, and cons, etc)
have already been defined for you.

• The basic reduction rules are exactly the same.

41Lecture 20: λ Calculus

A Turing simulator in Scheme

42Lecture 20: λ Calculus

TM Simulator demonstration

A Turing Machine recognizing anbn Encoding of the FSM in Scheme.

8

43Lecture 20: λ Calculus

Summary: TM and λ Calculus

• λ Calculus emphasizes the use of

transformation rules and does not care
about the actual machine implementing

them.

• It is an approach more related to software

than to hardware

Many slides and examples are adapted
from materials developed for Univ. of
Virginia CS150 by David Evans.

