
1

Class 21: Class 21:

Introducing Introducing

ComplexityComplexity

David EvansDavid Evans
http://www.cs.virginia.edu/evanshttp://www.cs.virginia.edu/evans

cs302: Theory of Computationcs302: Theory of Computation

University of Virginia Computer ScienceUniversity of Virginia Computer Science 2Lecture 21: Introducing Complexity

Exam 2

3Lecture 21: Introducing Complexity

Good News

• 96% of you got 1a (a language is a set of

strings) correct

• Most people got most credit for:

– 2a (design a TM)

– 2b (cyclical TM)

– 3a (one-way simulation proof claiming

equivalence)

4Lecture 21: Introducing Complexity

Confusing News?

For question 1b (“Explain the essence of the

Church-Turing Thesis in a way that would be

understandable to a typical fifth grader”) more

than half of you assumed a 5th grader knows what

a Turing machine is (and about ¼ assumed they

know Lambda calculus also!)

Coming up with a good answer for this question with time pressure is tough.

A good answer would either explain C-T thesis without needing TMs (using

things a 5th grader already understands), or include an explanation of what a

TM is. You can submit a new answer Tuesday. Or, find/make a 5th grader

who understands TMs well enough to actually understand your answer.

5Lecture 21: Introducing Complexity

Bad News

• Only 25/81 (>= 8 on 4b) and 24/81 (>= 8 on

4c) of you were able to get close to a

convincing reduction proof.

• But, to solve complexity problem, you will

need to do tougher reduction proofs!

These were pretty tough questions, so many

its actually good news that ~30% got them.

Practicing more now would be a good idea!

6Lecture 21: Introducing Complexity

Good/Bad News

• You have an opportunity to improve your

score on Exam 2 by submitting improved

answers to these questions

• Good news: I will provide some hints how to

get started next.

• Bad news: Since I have provided hints, and

you have as much time as you need, I expect

very clear, convincing, correct answers.

2

7Lecture 21: Introducing Complexity

4b

NOTSUBTM = { <A, B> | A and B are descriptions

of TMs and there is some string which is

accepted by A that is not accepted by B }

8Lecture 21: Introducing Complexity

4c

LBusyBee = {<M, w, k> | M describes a TM, k is the

number of different FSM states M enters

before halting on w }

9Lecture 21: Introducing Complexity

Computability and Complexity

10Lecture 21: Introducing Complexity

Classes 1-12

Regular Languages

Context-Free Languages

Violates Pumping

Lemma For RLs

V
io

la
te

s
P

u
m

p
in

g
Le

m
m

a
Fo

r
C

FL
s

Described by DFA, NFA,

RegExp, RegGram

D
escribed by CFG

,

N
D

PD
A

0n1n
0 n1 n2 n

0n

w

Deterministic CFLs

LL(k) Languages

Described by LL(k)

Grammar

Indexed Grammars

11Lecture 21: Introducing Complexity

Classes 13-20

Decidable by any mechanical

computing machine

Undecidable

12Lecture 21: Introducing Complexity

Today - End

Decidable

Undecidable

Tractable: “Decidable in

a reasonable amount of

time and space”

3

13Lecture 21: Introducing Complexity

Computability Complexity

Decidable

Undecidable

~1800s – 1960s

1900: Hilbert’s Problems

1936: Turing’s Computable Numbers

1957: Chomsky’s Syntactic Structures

(Mostly) “Dead” field

Intractable

Tractable

1960s – 2150?

1960s: Hartmanis and

Stearns: Complexity class

1971: Cook/Levin, Karp: P=NP?

1976: Knuth’s O, Ω, Θ

Very Open and Alive

14Lecture 21: Introducing Complexity

Complexity Classes
• Computability Classes: sets of problems

(languages) that can be solved

(decided/recognized) by a given machine

• Complexity Classes: sets of problems

(languages) that can be solved (decided) by a

given machine (usually a TM) within a limited

amount of time or space

How many complexity classes are there?

Infinitely many! “Languages that can be decided by some

TM using less than 37 steps” is a complexity class

15Lecture 21: Introducing Complexity

Interesting Complexity Classes

http://qwiki.stanford.edu/wiki/Complexity_Zoo

467 “interesting”

complexity

classes (and

counting)!

16Lecture 21: Introducing Complexity

The “Petting Zoo”

“Under construction! Once

finished, the Petting Zoo will

introduce complexity theory to

newcomers unready for the

terrifying and complex beasts

lurking in the main zoo.”

cs302

We will only get to the entrance of the “Petting Zoo”. But,

even here there are “terrifying and complex beasts lurking”!

17Lecture 21: Introducing Complexity

The Most Terrifying Beast:

Subject of Ultimate Mystery

Decidable

TractableNP

Option 1: There are problems in

Class NP that are not tractable
Option 2: All problems in

Class NP are tractable

Decidable

Tractable

NP

18Lecture 21: Introducing Complexity

P = NP ?

• We need a couple more classes before

explaining this (but will soon)

• This is an open question: no one knows the

answer

– If you can answer it, you will receive fame,

fortune, and an A+ in cs302!

– But, you should get some insight into what an

answer would look like, and what it would mean

4

19Lecture 21: Introducing Complexity

Orders of GrowthOrders of Growth

20Lecture 21: Introducing Complexity

Order Notation

O(f), Ω(f), o(f), ΘΘΘΘ(f)

Warning: you have probably seen some of these notations

before in cs201 and cs216. What you learned about them

there was probably (somewhat) useful but incorrect. (Note: if

you learned them in cs150, then you learned them correctly.)

21Lecture 21: Introducing Complexity

Order Notation

• O(f), Ω(f), o(f), Θ(f)

• These notations define sets of functions

– Generally: functions from positive integer to
real

• We are interested in how the size of the
outputs relates to the size of the inputs

22Lecture 21: Introducing Complexity

Big O

• Intuition: the set O(f) is the set of functions

that grow no faster than f

– More formal definition coming soon

• Asymptotic growth rate

– As input to f approaches infinity, how fast does

value of f increase

– Hence, only the fastest-growing term in f matters:

O(12n2 + n) ⊂ O(n3)

O(n) ≡ O(63n + log n – 423)

23Lecture 21: Introducing Complexity

Examples

O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Faster Growing

24Lecture 21: Introducing Complexity

Formal Definition

f ∈ O (g) means:

There are positive constants c and n0

such that

f(n) ≤≤≤≤ cg(n)

for all values n ≥ n0.

5

25Lecture 21: Introducing Complexity

O Examples

x ∈ O (x2)? Yes, c = 1, n0=2 works fine.

10x ∈ O (x)? Yes, c = 11, n0=2 works fine.

x2 ∈ O (x)? No, no matter what c and n0

we pick, cx2 > x for big enough x

f (n) ∈ O (g (n)) means: there are
positive constants c and n0 such that
f(n) ≤≤≤≤ cg(n) for all values n ≥≥≥≥ n0.

26Lecture 21: Introducing Complexity

Lower Bound: Ω (Omega)

f(n) is Ω (g (n)) means:

There are positive constants c and n0

such that

f (n) ≥≥≥≥ cg(n)

for all n ≥ n0.

Difference from O – this was ≤

27Lecture 21: Introducing Complexity

O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Where is
Ω(n2)?

Ω(n2)

Faster Growing

28Lecture 21: Introducing Complexity

Ω(n3)

Ω(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

O(n2)

Slower Growing

Inside-Out

29Lecture 21: Introducing Complexity

Recap

• Big-O: the set O(f) is the set of functions that

grow no faster than f

– There exist positive integers c, n0 > 0 such that f(n)

≤≤≤≤ cg(n) for all n ≥ n0.

• Omega (Ω): the set Ω(f) is the set of functions

that grow no slower than f

– There exist positive integers c, n0 > 0 s.t. f(n) ≥≥≥≥

cg(n) for all n ≥ n0.

30Lecture 21: Introducing Complexity

O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Ω(n2)

Faster Growing

What else might be useful?

6

31Lecture 21: Introducing Complexity

Theta (“Order of”)
• Intuition: the set Θ(f) is the set of functions that

grow as fast as f

• Definition: f (n) ∈ Θ (g (n)) if and only if both:

1. f (n) ∈ O (g (n))

and 2. f (n) ∈ Ω (g (n))

– Note: we do not have to pick the same c and n0 values
for 1 and 2

• When we say, “f is order g” that means

f (n) ∈ Θ (g (n))

32Lecture 21: Introducing Complexity

O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Ω(n2)

Faster Growing

Tight Bound Theta (Θ)

Θ(n2)

33Lecture 21: Introducing Complexity

Summary

• Big-O: there exist c, n0 > 0 such that f(n) ≤≤≤≤

cg(n) for all n ≥ n0.

• Omega (Ω): there exist c, n0 > 0 s.t. f(n) ≥≥≥≥

cg(n) for all n ≥ n0.

• Theta (Θ): both O and Ω are true

When you were encouraged to use Big-O in cs201/cs216

to analyze the running time of algorithms, what should

you have been using?

34Lecture 21: Introducing Complexity

Algorithm Analysis

• In Big-O notation, what is the running time of

algorithm X?

O(nnnn
)

This is surely correct, at least for all

algorithms you saw in cs201/cs216.

Should ask: In Theta notation, what is the running time of

algorithm X?

Given an algorithm, should always be able to find a tight bound.

35Lecture 21: Introducing Complexity

Complexity of Problems

So, why do we need O and Ω?

We care about the complexity of problems

not algorithms. The complexity of a problem

is the complexity of the best possible

algorithm that solves the problem.

Revised exam answers are due at

beginning of class Tuesday.

