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Good News

• 96% of you got 1a (a language is a set of 

strings) correct

• Most people got most credit for:

– 2a (design a TM)

– 2b (cyclical TM)

– 3a (one-way simulation proof claiming 

equivalence)
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Confusing News?

For question 1b (“Explain the essence of the 

Church-Turing Thesis in a way that would be 

understandable to a typical fifth grader”) more 

than half of you assumed a 5th grader knows what 

a Turing machine is (and about ¼ assumed they 

know Lambda calculus also!)

Coming up with a good answer for this question with time pressure is tough.  

A good answer would either explain C-T thesis without needing TMs (using 

things a 5th grader already understands), or include an explanation of what a 

TM is.  You can submit a new answer Tuesday.  Or, find/make a 5th grader 

who understands TMs well enough to actually understand your answer.
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Bad News

• Only 25/81 (>= 8 on 4b) and 24/81 (>= 8 on 

4c) of you were able to get close to a 

convincing reduction proof.

• But, to solve complexity problem, you will 

need to do tougher reduction proofs!

These were pretty tough questions, so many 

its actually good news that ~30% got them.

Practicing more now would be a good idea!
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Good/Bad News

• You have an opportunity to improve your 

score on Exam 2 by submitting improved 

answers to these questions

• Good news: I will provide some hints how to 

get started next.

• Bad news: Since I have provided hints, and 

you have as much time as you need, I expect 

very clear, convincing, correct answers.
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4b

NOTSUBTM = { <A, B> | A and B are descriptions 

of TMs and there is some string which is 

accepted by A that is not accepted by B }
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4c

LBusyBee = {<M, w, k> | M describes a TM, k is the 

number of different FSM states M enters 

before halting on w }
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Computability and Complexity
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Classes 1-12
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Classes 13-20

Decidable by any mechanical 

computing machine

Undecidable
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Today - End

Decidable

Undecidable

Tractable: “Decidable in 

a reasonable amount of 

time and space”
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Computability             Complexity

Decidable

Undecidable

~1800s – 1960s

1900: Hilbert’s Problems

1936: Turing’s Computable Numbers

1957: Chomsky’s Syntactic Structures

(Mostly) “Dead” field

Intractable

Tractable

1960s – 2150?

1960s: Hartmanis and  

Stearns: Complexity class

1971: Cook/Levin, Karp: P=NP?

1976: Knuth’s O, Ω, Θ

Very Open and Alive
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Complexity Classes
• Computability Classes: sets of problems 

(languages) that can be solved 

(decided/recognized) by a given machine 

• Complexity Classes: sets of problems 

(languages) that can be solved (decided) by a 

given machine (usually a TM) within a limited 

amount of time or space

How many complexity classes are there?

Infinitely many!  “Languages that can be decided by some 

TM using less than 37 steps” is a complexity class
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Interesting Complexity Classes

http://qwiki.stanford.edu/wiki/Complexity_Zoo

467 “interesting”

complexity 

classes (and 

counting)!
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The “Petting Zoo”

“Under construction! Once 

finished, the Petting Zoo will 

introduce complexity theory to 

newcomers unready for the 

terrifying and complex beasts 

lurking in the main zoo.”

cs302

We will only get to the entrance of the “Petting Zoo”.  But, 

even here there are “terrifying and complex beasts lurking”!
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The Most Terrifying Beast:

Subject of Ultimate Mystery

Decidable

TractableNP

Option 1: There are problems in 

Class NP that are not tractable
Option 2: All problems in 

Class NP are tractable

Decidable

Tractable

NP
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P = NP ?

• We need a couple more classes before 

explaining this (but will soon)

• This is an open question: no one knows the 

answer

– If you can answer it, you will receive fame, 

fortune, and an A+ in cs302!

– But, you should get some insight into what an 

answer would look like, and what it would mean
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Orders of GrowthOrders of Growth
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Order Notation

O( f ), Ω( f ), o( f ), ΘΘΘΘ( f )

Warning: you have probably seen some of these notations 

before in cs201 and  cs216.  What you learned about them 

there was probably (somewhat) useful but incorrect.  (Note: if 

you learned them in cs150, then you learned them correctly.)
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Order Notation

• O( f ), Ω( f ), o( f ), Θ( f )

• These notations define sets of functions

– Generally: functions from positive integer to 
real

• We are interested in how the size of the 
outputs relates to the size of the inputs
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Big O

• Intuition: the set O(f) is the set of functions 

that grow no faster than f

– More formal definition coming soon

• Asymptotic growth rate

– As input to f approaches infinity, how fast does 

value of f increase

– Hence, only the fastest-growing term in f matters:

O(12n2 + n) ⊂ O(n3)

O(n) ≡ O(63n + log n – 423)
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Examples

O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Faster Growing
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Formal Definition

f ∈ O (g) means:

There are positive constants c and n0

such that 

f(n) ≤≤≤≤ cg(n)

for all  values n ≥ n0. 
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O Examples

x ∈ O (x2)? Yes, c = 1, n0=2 works fine.

10x ∈ O (x)? Yes, c = 11, n0=2 works fine.

x2 ∈ O (x)? No, no matter what c and n0

we pick, cx2 > x for big enough x

f (n) ∈ O (g (n)) means: there are 
positive constants c and n0 such that 
f(n) ≤≤≤≤ cg(n) for all values n ≥≥≥≥ n0. 
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Lower Bound: Ω (Omega)

f(n) is Ω (g (n)) means:

There are positive constants c and n0

such that 

f (n) ≥≥≥≥ cg(n)

for all n ≥ n0. 

Difference from O – this was ≤
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O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Where is
Ω(n2)?

Ω(n2)

Faster Growing
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Ω(n3)

Ω(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

O(n2)

Slower Growing

Inside-Out
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Recap

• Big-O: the set O(f) is the set of functions that 

grow no faster than f

– There exist positive integers c, n0 > 0 such that f(n) 

≤≤≤≤ cg(n) for all n ≥ n0.

• Omega (Ω): the set Ω(f) is the set of functions 

that grow no slower than f

– There exist positive integers c, n0 > 0 s.t. f(n) ≥≥≥≥

cg(n) for all n ≥ n0.
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O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Ω(n2)

Faster Growing

What else might be useful?
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Theta (“Order of”)
• Intuition: the set Θ(f ) is the set of functions that 

grow as fast as f

• Definition: f (n) ∈ Θ (g (n)) if and only if both: 

1. f (n) ∈ O (g (n))

and 2. f (n) ∈ Ω (g (n))

– Note: we do not have to pick the same c and n0 values 
for 1 and 2

• When we say, “f is order g” that means

f (n) ∈ Θ (g (n))
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O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Ω(n2)

Faster Growing

Tight Bound Theta (Θ)

Θ(n2)
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Summary

• Big-O: there exist c, n0 > 0 such that f(n) ≤≤≤≤

cg(n) for all n ≥ n0.

• Omega (Ω): there exist c, n0 > 0 s.t. f(n) ≥≥≥≥

cg(n) for all n ≥ n0.

• Theta (Θ): both O and Ω are true

When you were encouraged to use Big-O in cs201/cs216 

to analyze the running time of algorithms, what should 

you have been using?
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Algorithm Analysis

• In Big-O notation, what is the running time of 

algorithm X?

O(nnnn
)

This is surely correct, at least for all 

algorithms you saw in cs201/cs216.

Should ask: In Theta notation, what is the running time of 

algorithm X?

Given an algorithm, should always be able to find a tight bound.
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Complexity of Problems

So, why do we need O and Ω?

We care about the complexity of problems 

not algorithms. The complexity of a problem 

is the complexity of the best possible 

algorithm that solves the problem.

Revised exam answers are due at 

beginning of class Tuesday.


