

Good News

- 96% of you got 1a (a language is a set of strings) correct
- Most people got most credit for:
- 2a (design a TM)
- 2b (cyclical TM)
- 3a (one-way simulation proof claiming equivalence)

Lecture 21: introducing complexity	3	

Bad News

- Only $25 / 81$ ($>=8$ on 4 b) and $24 / 81$ ($>=8$ on 4 c) of you were able to get close to a convincing reduction proof.

These were pretty tough questions, so many its actually good news that $\sim 30 \%$ got them.

- But, to solve complexity problem, you will need to do tougher reduction proofs!

Practicing more now would be a good idea!

Lecture 21: Introducing Complexity
5 Computer Science

Good/Bad News

- You have an opportunity to improve your score on Exam 2 by submitting improved answers to these questions
- Good news: I will provide some hints how to get started next.
- Bad news: Since I have provided hints, and you have as much time as you need, I expect very clear, convincing, correct answers.

4 b
NOTSUB $_{\mathrm{TM}}=\{<A, B>\mid A$ and B are descriptions
of $T M s$ and there is some string which is
accepted by A that is not accepted by $B\}$

| 4 C |
| :---: | :---: |
| $L_{\text {BusyBee }}=\{<M, w, k>\mid M$ describes a TM, k is the
 number of different
 bSM states M enters
 before halting on $w\}$ |
| |

| |
| :--- | :--- |
| |
| |
| |
| |
| |

| Computability |
| :---: | :---: |
| Undecidable |

Complexity Classes

- Computability Classes: sets of problems (languages) that can be solved (decided/recognized) by a given machine
- Complexity Classes: sets of problems (languages) that can be solved (decided) by a given machine (usually a TM) within a limited amount of time or space
How many complexity classes are there?
Infinitely many! "Languages that can be decided by some TM using less than 37 steps" is a complexity class

Lecture 21: Introducing complexity	14	Computer Science

$$
P=N P ?
$$

- We need a couple more classes before explaining this (but will soon)
- This is an open question: no one knows the answer
- If you can answer it, you will receive fame, fortune, and an A+ in cs302!
- But, you should get some insight into what an answer would look like, and what it would mean

Order Notation

- $O(f), \Omega(f), \mathrm{o}(f), \Theta(f)$
- These notations define sets of functions
- Generally: functions from positive integer to real
- We are interested in how the size of the outputs relates to the size of the inputs

Formal Definition

$f \in O(g)$ means:
There are positive constants c and n_{0} such that

$$
f(n) \leq c g(n)
$$

for all values $n \geq n_{0}$.

O Examples

$f(n) \in O(g(n))$ means: there are positive constants c and n_{0} such that $f(n) \leq c g(n)$ for all values $n \geq n_{0}$.
$x \in O\left(x^{2}\right)$? Yes, $\mathrm{c}=1, n_{0}=2$ works fine.
$10 x \in O(x)$? Yes, $\mathrm{c}=11, n_{0}=2$ works fine.
$x^{2} \Leftrightarrow O(x) ?$
No, no matter what c and n_{0} we pick, $c x^{2}>x$ for big enough x
Lecture 21: Introducing Complexity 25

Lower Bound: Ω (Omega)

$f(n)$ is $\Omega(g(n))$ means:
There are positive constants c and n_{0} such that

$$
f(n) \geq c g(n)
$$

for all $n \geq n_{0}$.

Difference from O - this was \leq
Lecture 21: Introducing Complexity 26 Computer Science

Theta ("Order of")

- Intuition: the set $\Theta(f)$ is the set of functions that grow as fast as f
- Definition: $f(n) \in \Theta(g(n))$ if and only if both: 1. $f(n) \in O(g(n))$
and 2. $f(n) \in \Omega(g(n))$
- Note: we do not have to pick the same c and n_{0} values for 1 and 2
- When we say, " f is order g " that means $f(n) \in \Theta(g(n))$
Lecture 21: Introducing Complexity 31 Computer Science

Summary

- Big-O: there exist $c, n_{0}>0$ such that $f(n) \leq$ $\operatorname{cg}(n)$ for all $n \geq n_{0}$.
- Omega (Ω): there exist $c, n_{0}>0$ s.t. $f(n) \geq$ $c g(n)$ for all $n \geq n_{0}$.
- Theta (Θ) : both O and Ω are true

When you were encouraged to use $\mathrm{Big}-\mathrm{O}$ in cs201/cs216 to analyze the running time of algorithms, what should you have been using?

Tight Bound Theta (Θ)

Algorithm Analysis

- In Big-O notation, what is the running time of algorithm X ?

$$
O\left(\mathrm{n}^{\mathrm{n}^{\mathrm{n}^{\mathrm{n}}}}\right)
$$

This is surely correct, at least for all algorithms you saw in cs201/cs216.

Should ask: In Theta notation, what is the running time of algorithm X ?

Given an algorithm, should always be able to find a tight bound.
Lecture 21: Introducing Complexity
34
Computer Science

Complexity of Problems

So, why do we need O and Ω ?
We care about the complexity of problems not algorithms. The complexity of a problem is the complexity of the best possible algorithm that solves the problem.

> | Revised exam answers are due at |
| :--- |
| beginning of class Tuesday. |

