

Menu

- Why 2150 ?
- Asymptotic Analysis
- Mind vs. Turing Machine (from PS5)
- Complexity Class P
- Complexity Class NP
Lecture 22: Clasyy Complexity Classes Computer Science

From last class:

Computability

1900: Hilbert's Problems
1936: Turing's Computable Numbers 1957: Chomsky's Syntactic Structures
(Mostly) "Dead" field

Complexity
Intractable

1960s-2150?
1960s: Hartmanis and Stearns: Complexity class 1971: Cook/Levin, Karp: $P=N P$? 1976: Knuth's O, Ω, Θ Very Open and Alive

Asymptotic Notation Recap

- Big- $O: f \in O(g)$: no faster than
if there exist $c, n_{0}>0$ such that

$$
f(n) \leq c g(n) \text { for all } n \geq n_{0} . \begin{aligned}
& \text { Little-o: } \\
& <\text { instead of } \leq \\
& \hline
\end{aligned}
$$

- Omega: $f \in \Omega(g)$: no slower than
if there exist $c, n_{0}>0$ such that

$$
f(n) \geq c g(n) \text { for all } n \geq n_{0} .
$$

- Theta: $f \in \Theta(g)$ iff $f \in O(g)$ and $f \in \Omega(g)$

Predicting Knowledge

- In golden age fields, knowledge doubles every 15 years (read Neil DeGrasse Tyson's Science's Endless Golden Age)
- Hence, in 2158, we should know ~1024 times (10 doublings) what we know today
- So, guessing it will end in ~ 2150 implies:
- Computational Complexity is a finite field
- What we know today is about $1 / 1000^{\text {th }}$ what there is

I don't know if either of these is true, but they seem like reasonable guesses...
Lecture 22: Classy Complexity Classes Computer Science

Algorithm Analysis

- What is the asymptotic running time of the Java-ish procedure below:
int gaussSum (int m) \{

Algorithm Analysis

- gaussSum is order n : "A function that outputs the running time of gaussSum when the input is the value of the input is in $\Theta(n)$.

```int gaussSum (int m) { int sum = 0; for (int i = 1; i <= m; i++) { sum = sum + i;```	Assumes:   $m$ is unbounded (not true for real Java)   + is constant time (not true if $m$ is unbounded)
return sum; \}	Note that these assumptions are mutually inconsistent so the answer is "wrong" (but useful).
Lecture 22: Classy Complexity Cla	䍏\| Computer Science

## What are we really measuring?

- Input size: number of tape squares it takes to write down the input
- Running time: number of steps it takes before TM enters a final state
- Input size for gaussSum $=\log m$
- Number of bits to represent $\eta$ (not its magnitude)
- Note: if we used unary it would be size $m$

Why doesn't log base matter in asymptotic notations?

## Algorithm Analysis

int gaussSum (int m) \{
int sum $=0$;
for (int $i=1 ; i<=m ; i++)\{$
sum $=\operatorname{sum}+i ;\}$
return sum;
\}
cs201/cs216 answer: $\Theta(n)$ where $n$ is the value of the input
cs302 answer: in $\Theta\left(2^{N} N\right)$ where $N$ is the size of the input.
cs432 answer: don't analyze Java code, analyze idealized pseudocode and state assumptions clearly.

## "Correct"ish Answers

int gaussSum (int m) \{
int sum = 0;
for (int $i=1 ; i<=m ; i++$ ) \{
sum $=$ sum $+i$;
\}
return sum;
\}
Assume $m$ is unbounded. Then, the average running time of the + is in $\Theta(\log m)$, so the running time of gaussSum is in $\Theta(m \log m)$.
Lecture 22: Classy Complexity Classes 8 Computer Science

Most Cor	rect Answer
```int gaussSum (int m) { int sum = 0; for (int i= 1; i <= m; i++) {```	
```sum = sum + i; } return sum;```	Assume the size of the input $N$ is unbounded. Then, $m \sim 2^{N}$. The running time of + is in
$\text { Is } \Theta\left(2^{N} N\right)=\Theta\left(2^{N}\right) \text { ? }$	$\Theta(\log m)=\Theta(N)$ so the running time of gaussSum is in
Left as small challenge problem (everyone should be able to answer this using definition of $\boldsymbol{\Theta}$.)	$\Theta\left(\mathbf{2}^{N} N\right)=$ where $N$ is the size of the input.
Lecture 22: Classy Complexity Classes	10 Computer Science

## gaussSum Problem

- So, what is the time complexity of the gaussSum problem?

Input: a positive integer $m$
Output: sum of the integers from 1 to $m$.
From the previous analysis, we know an algorithm that solves it with running time in $\Theta\left(N 2^{N}\right)$.

This means the time complexity of the problem is in $\boldsymbol{O}\left(N 2^{N}\right)$. But it does not give a tight bound.

## gaussSum Problem

- Can we get a lower bound?

Input: a positive integer $m$
Output: sum of the integers from 1 to $m$.

At a minimum, we need to look at each symbol in the   input. So, there is no algorithm asymptotically faster   than $\Theta(N)$.   This means the time complexity of the problem is in   $\Omega(N)$. But it does not give a tight bound.   Lecture 22: Classy Complexity Classes

Getting a Tighter Bound


Johann Carl Friedrich Gauss, 1777-1855
gaussSum( $n$ ) $=(n+1)(n / 2)$
What is the fastest known multiplication algorithm?
Until 2007: Schönhage-Strassen algorithm in $\Theta(N \log N \log \log N)$
Today: Fúrer's algorithm in $\Theta\left(N \log N 2^{\mathrm{O}\left(\log ^{*} N\right)}\right)$
Tomorrow: unknown if there is a faster multiplication algorithm

## Minds vs. Turing Machines

Problem Set 5, Question 6: Many people find the suggestion that a human mind is no more powerful than a Turing Machine to be disturbing, but there appear to be strong arguments supporting this position. ... Write a short essay that counters this argument (although many books have been written on this question, you should limit your response to no more than one page). If you reject the premise of this question either because you do not find it disturbing to think of your mind as a Turing Machine, or you feel that the only way to counter this argument is to resort to supernatural (e.g., religious) notions, you may replace this question with Sipser's Problem 5.13. About $1 / 5$ chose to replace question
Lecture 22: Classy Complexity Clases $\quad 17$ Computer Science

## gaussSum Problem

- Can we get a tight bound?

Input: a positive integer $m$
Output: sum of the integers from 1 to $m$.

The time complexity of the   problem is in $\Omega(N)$.	The time complexity of the   problem is in $\boldsymbol{O}\left(N 2^{N}\right)$.
Ring of   possibilities	Is there a   O bound?

## Best Known Bounds

Input: a positive integer $m$ Output: sum of the integers from 1 to $m$.

The time complexity of the   problem is in $\Omega(N)$.	The time complexity of the problem   is in $\boldsymbol{O}\left(N \log N 2^{\mathrm{O}\left(\log ^{*} N\right)}\right)$.
Ring of   possibilities	
Getting a tight bound for a problem is very hard!   Need to prove you have the best possible algorithm.	
Lecture 22: classy Complexity classes	16

## Most Common Answer: Randomness

- "...human brain can create true randomness"
- "The outputs of neurons do NOT deterministically depend on the inputs because of quantum uncertainty."

Leture 22: cassy compexity casses	18

## Self-Modification

- "... Humans can even learn enough from the world around them to alter their own programming."
- "...a TM cannot adapt, and has no way to change its own rules or states."

Recall a Universal TM can simulate every other TM.
So, it is certainly possible for a TM to simulate a TM that changes rules and states in response to the input. those patterns to filter new data. Since our brains store memories primarily through association rather than just memory addresses, this allows for an integrated, relational system of memories.... Our memories "fade" over time, yet can occasionally be brought back...

Eric Montgomery
Lecture 22: Classy Complexity Classes 21 Computer Science

## Self-Awareness

Humans are more "cognizant" of their shortcomings than TMs. There are several problems that humans understand are impossible to answer, but no TM can simulate the decision that any of these problems are decidedly unsolvable. David Horres

I can't help but quote from South Park: "You see, the basis of all reasoning is the mind's awareness of itself. What we think, the external objects we perceive, are all like actors that come on and off stage. But our consciousness, the stage itself, is always present to us." (Kyle)

Hung-in Lam

Self-AwarenesS
Humans are more "cognizant" of their shortcomings than TMs.   There are several problems that humans understand are   impossible to answer, but no TM can simulate the decision   that any of these problems are decidedly unsolvable.   David Horres
I can't help but quote from South Park: "You see, the basis of   all reasoning is the mind's awareness of itself. What we think,   the external objects we perceive, are all like actors that come   on and off stage. But our consciousness, the stage itself, is   always present to us." (Kyle)
Hung-in Lam
Lecture 22: classy complexity classes

## Real Time/World Interactions

"ability to interact with the surrounding environment"

Real Time/World Interactions
"ability to interact with the surrounding environment"
A mind can interact with physical inputs and outputs in real   time. The brain is able to make decisions in real time; either a   synapse fires or it doesn't. What would happen in a brain   model that waited forever for a single binary decision? Would   the brain-simulating TM ever be able to make all the decisions   necessary for even the tiniest slice of time? Such a TM would   probably be eaten by a hungry woof; how embarrassing for   such a smart machine!
Rachel Miller
Lecture 22: classy complexity classes


Resilience
"The brain can function without some of its components,
but a TM cannot...."
Jalysa Conway
"The human mind is also capable of breaking out of an   infinite loop that a TM would be stuck in forever... a   person gets bored, something that no TM can emulate. "   Timothy Kang
24

Neurons tend to fire in a synchronized way. A group of neurons in one part of the brain, for example, may light up at the same time and cause another group to activate in another region. Finally, neurons are capable of neurogenesis, the creation of new brain cells. A TM, no matter how much use it gets, will always remain a TM. The brain, however, is a muscle that is influenced by many factors, including usage. In fact, even the eldest of living humans can avoid mental breakdown by simply exercising their brains frequently...

Christopher Andersen
Note: exercising your brain is a good idea for young humans also!
Lecture 22: Classy Complexity Classes 25 Computer Science


## Non-Robustness of TM Complexity

- Computability: all variations on TMs have the same computing power
- If there is a multi-tape TM that can decide $L$, there is a regular TM that can decide $L$.
- If there is a nondeterministic TM that can decide $L$, there is a deterministic TM that can decide $L$.
- Complexity: variations on TM can solve problems in different times
- Is a multi-tape TM faster than a regular TM?
- Is a nondeterministic TM faster than a regular TM?


## Would it be useful to have a computational problem that humans can solve but computers cannot solve?



## Complexity Class $\mathbf{P}$

Lecture 22: Clasy Complexity Classes $\quad 28$ 合到 Computer Science

Multi-Tape vs. One-Tape TM

Are there problems that are in TIME $(t(n))$ for a multi-tape TM, but not in TIME $(t(n))$ for a one-tape TM?

## Copy Input Problem

Input: $w$, a string of $N$ bits Output: ww
Obvious multi-tape algorithm that involves 2 N steps: $N$ steps: walk over the input, copying it to the second tape $N$ steps: continue to move right, copying the second tape contents onto the input tape after the input

Best (?) single-tape algorithm that involves $\sim 2 N^{2}$ steps: $N$ iterations: move over the input, marking each symbol $N$ steps: move to the first non-blank square, write that symbol $N$ steps: move back to the rightmost marked input symbol

Intuitively is seems impossible to do much better, but hard to prove!

## Making things Robustier?

- Find a more robust computing model than a TM
- Church-Turing thesis says all mechanical models are equivalent (computing power) to a TM
- But, this doesn't mean there might not be better models for complexity
- Make the complexity classes bigger
- Define a complexity class big enough so the little tweaks to TMs do not change the answers


## Classes in $\mathbf{P}$

a) $\operatorname{TIME}\left(N^{2}\right)$
b) $\operatorname{TIME}\left(O\left(N^{7}\right)\right)$ c) $\operatorname{THME}\left(O\left(2^{N}\right)\right)$ Yes! We can simulate each step of a 2-tape TM by making 2 passes over the whole tape $\sim 2(N+t(n))$ (See Theorem 7.8)
d) Class of languages that can be decided in Polynomial Time by a 2-tape TM
e) Class of languages that can be decided in Polynomial Time by a nondeterministic TM
Unknown! This is the $\mathrm{P}=$ NP question. Focus of next class...

## Theory is about

 Big Questions well focus on answering the practical questions for a real system and specific problem instance instead.Leeture 22: Clasy Complexity Classes 32 Computer Science


## Charge

- PS6 is now posted, due Thursday, April 24
- Office hours tomorrow are in my office, 1011am
- Read Sipser Chapter 7
- It is not expected to understand the proof of the Cook-Levin Theorem (pages 277-282)
- Thursday (Isabelle Stanton):
- Restating the $\mathrm{P}=\mathrm{NP}$ question
- How do we make progress in answering it?

