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Class 22: Class 22: 

ClassyClassy

Complexity Complexity 

ClassesClasses

David EvansDavid Evans
http://www.cs.virginia.edu/evanshttp://www.cs.virginia.edu/evans

cs302: Theory of Computationcs302: Theory of Computation

University of Virginia Computer ScienceUniversity of Virginia Computer Science

Office hours 

note: my office 

hours tomorrow 

will be 10-11am 

in my office.
PS6 (the last one) is posted now and will be 

due Thursday, April 24.
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Menu

• Why 2150?

• Asymptotic Analysis

• Mind vs. Turing Machine (from PS5)

• Complexity Class P

• Complexity Class NP
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Computability             Complexity

Decidable

Undecidable

~1800s – 1960s

1900: Hilbert’s Problems

1936: Turing’s Computable Numbers

1957: Chomsky’s Syntactic Structures

(Mostly) “Dead” field

Intractable

Tractable

1960s – 2150?

1960s: Hartmanis and  

Stearns: Complexity class

1971: Cook/Levin, Karp: P=NP?

1976: Knuth’s O, Ω, Θ

Very Open and Alive

From last class:

4Lecture 22: Classy Complexity Classes

Predicting Knowledge

• In golden age fields, knowledge doubles every 15 

years (read Neil DeGrasse Tyson’s Science’s 

Endless Golden Age)

• Hence, in 2158, we should know ~1024 times (10 

doublings) what we know today

• So, guessing it will end in ~2150 implies:

– Computational Complexity is a finite field

– What we know today is about 1/1000th what there is 

I don’t know if either of these is true, but they seem like reasonable guesses...
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Asymptotic Notation Recap

• Big-O: f ∈ O(g): no faster than

if there exist c, n0 > 0 such that

f(n) ≤≤≤≤ cg(n) for all n ≥ n0.

• Omega: f ∈ Ω(g): no slower than

if there exist c, n0 > 0 such that 

f(n) ≥≥≥≥ cg(n) for all n ≥ n0.

• Theta: f ∈ Θ(g) iff f ∈ O(g) and f ∈ Ω(g)

Little-o: 

< instead of ≤≤≤≤
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Algorithm Analysis

• What is the asymptotic running time of the 

Java-ish procedure below:

int gaussSum (int m) {

int sum = 0;

for (int i = 1; i <= m; i++) {

sum = sum + i;

}

return sum;

}

Good “cs201/cs216” answer:

Θ(n)

What does this mean?

What does it assume?
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Algorithm Analysis

• gaussSum is order n: “A function that outputs 
the running time of gaussSum when the input 
is the value of the input is in Θ(n).

int gaussSum (int m) {

int sum = 0;

for (int i = 1; i <= m; i++) {

sum = sum + i;

}

return sum;

}

Assumes:

m is unbounded

(not true for real Java)

+ is constant time

(not true if m is unbounded)

Note that these assumptions 

are mutually inconsistent so the 

answer is “wrong” (but useful).
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“Correct”ish Answers

int gaussSum (int m) {

int sum = 0;

for (int i = 1; i <= m; i++) {

sum = sum + i;

}

return sum;

}

Assume m is bounded (e.g., 

32-bit integer as in real 

Java). Then, running time of 

gaussSum is in O(1).

Assume m is unbounded. Then, the 

average running time of the + is in 

Θ(log m), so the running time of 

gaussSum is in Θ(m log m).
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What are we really measuring?

• Input size: number of tape squares it takes to 

write down the input

• Running time: number of steps it takes before 

TM enters a final state

• Input size for gaussSum = log m

– Number of bits to represent m (not its magnitude)

– Note: if we used unary it would be size m

Why doesn’t log base matter in asymptotic notations?
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Most Correct Answer

int gaussSum (int m) {

int sum = 0;

for (int i = 1; i <= m; i++) {

sum = sum + i;

}

return sum;

}

Assume the size of the input N

is unbounded. Then, m ~ 2N.  

The running time of + is in 

Θ(log m) = Θ(N) so the 

running time of gaussSum is in 

ΘΘΘΘ(2NN) = where N is the size

of the input.

Is ΘΘΘΘ(2NN) = ΘΘΘΘ(2N)?

Left as small challenge problem 

(everyone should be able to answer 

this using definition of ΘΘΘΘ.)
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Algorithm Analysis
int gaussSum (int m) {

int sum = 0;

for (int i = 1; i <= m; i++) {

sum = sum + i; }

return sum;

}

cs201/cs216 answer: Θ(n)

where n is the value of the input

cs302 answer: in ΘΘΘΘ(2NN) where N is the size of 

the input.

cs432 answer: don't analyze Java code, analyze idealized 

pseudocode and state assumptions clearly.
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gaussSum Problem

• So, what is the time complexity of the 

gaussSum problem?

Input: a positive integer m

Output: sum of the integers from 1 to m.

From the previous analysis, we know an algorithm that 

solves it with running time in ΘΘΘΘ(N2N).

This means the time complexity of the problem is in 

O(N2N).  But it does not give a tight bound.



3

13Lecture 22: Classy Complexity Classes

gaussSum Problem

• Can we get a lower bound?

Input: a positive integer m

Output: sum of the integers from 1 to m.

At a minimum, we need to look at each symbol in the 

input.  So, there is no algorithm asymptotically faster 

than ΘΘΘΘ(N).

This means the time complexity of the problem is in 

Ω(N).  But it does not give a tight bound.
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gaussSum Problem

• Can we get a tight bound?

Input: a positive integer m

Output: sum of the integers from 1 to m.

The time complexity of the 

problem is in Ω(N).  

The time complexity of the 

problem is in O(N2N).  

Ring of

possibilities
Is there a 

Θ bound?
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Getting a Tighter Bound

Johann Carl 

Friedrich Gauss, 

1777-1855

gaussSum(n) = (n + 1)(n/2)

What is the fastest known 

multiplication algorithm?

Until 2007: Schönhage-Strassen algorithm

in Θ(N log N log log N)

Today: Fűrer’s algorithm

in Θ(N log N 2O(log*N))

Tomorrow: unknown if there is a faster 

multiplication algorithm
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Best Known Bounds

Input: a positive integer m

Output: sum of the integers from 1 to m.

The time complexity of the 

problem is in Ω(N).  

The time complexity of the problem

is in O(N log N 2O(log*N)).  

Ring of

possibilities

Getting a tight bound for a problem is very hard!

Need to prove you have the best possible algorithm.
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Minds vs. Turing Machines

Problem Set 5, Question 6: Many people find the suggestion 

that a human mind is no more powerful than a Turing 

Machine to be disturbing, but there appear to be strong 

arguments supporting this position. … Write a short essay 

that counters this argument (although many books have been 

written on this question, you should limit your response to no 

more than one page). If you reject the premise of this 

question either because you do not find it disturbing to think 

of your mind as a Turing Machine, or you feel that the only 

way to counter this argument is to resort to supernatural 

(e.g., religious) notions, you may replace this question with 

Sipser’s Problem 5.13.
About 1/5 chose to replace question.
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Most Common Answer: 

Randomness

• "…human brain can create true randomness"

• "The outputs of neurons do NOT 

deterministically depend on the inputs 

because of quantum uncertainty."
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Self-Modification

• "… Humans can even learn enough from the 

world around them to alter their own 

programming."

• "…a TM cannot adapt, and has no way to 

change its own rules or states."

Recall a Universal TM can simulate every other TM.

So, it is certainly possible for a TM to simulate a TM that 

changes rules and states in response to the input.
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Self-Awareness

Humans are more "cognizant" of their shortcomings than TMs.  

There are several problems that humans understand are 

impossible to answer, but no TM can simulate the decision 

that any of these problems are decidedly unsolvable.

David Horres

I can't help but quote from South Park: "You see, the basis of 

all reasoning is the mind's awareness of itself.  What we think,

the external objects we perceive, are all like actors that come 

on and off stage.  But our consciousness, the stage itself, is 

always present to us." (Kyle)

Hung-in Lam
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Memory Access

Our brains have the ability to recognize patterns and then use 

those patterns to filter new data.  Since our brains store 

memories primarily through association rather than just 

memory addresses, this allows for an integrated, relational 

system of memories…. Our memories "fade" over time, yet 

can occasionally be brought back…

Eric Montgomery
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Real Time/World Interactions

A mind can interact with physical inputs and outputs in real 

time.  The brain is able to make decisions in real time; either a 

synapse fires or it doesn't.  What would happen in a brain 

model that waited forever for a single binary decision?  Would 

the brain-simulating TM ever be able to make all the decisions 

necessary for even the tiniest slice of time?  Such a TM would 

probably be eaten by a hungry woof; how embarrassing for 

such a smart machine!

Rachel Miller

"ability to interact with the surrounding environment"

23Lecture 22: Classy Complexity Classes

…ability of the human mind to process analog 

inputs.  The possible ranges for sound or light 

are infinite, and are not stored digitally in the 

brain. …

Chris Dodge

Some physicists think space-time can be quantized at 

about 10-23 meters and 10-32 seconds.  So, in theory a 

TM could process analog inputs, but in practice all the 

atoms in the universe would not be enough to make 

the tape for the TM…
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Resilience

"The brain can function without some of its components, 

but a TM cannot…."

Jalysa Conway

"The human mind is also capable of breaking out of an 

infinite loop that a TM would be stuck in forever… a 

person gets bored, something that no TM can emulate. "

Timothy Kang
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Neurons tend to fire in a synchronized way.  A group of 

neurons in one part of the brain, for example, may 

light up at the same time and cause another group to 

activate in another region.  Finally, neurons are 

capable of neurogenesis, the creation of new brain 

cells.  A TM, no matter how much use it gets, will 

always remain a TM.  The brain, however, is a muscle 

that is influenced by many factors, including usage.  In 

fact, even the eldest of living humans can avoid mental 

breakdown by simply exercising their brains 

frequently…
Christopher Andersen

Note: exercising your brain is a good idea for young humans also!
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Would it be useful to have a 

computational problem that 

humans can solve 

but computers cannot solve?

link

link
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Thwarting 

Spammers, 

Annoying 

Humans

CAPTCHA: Completely Automated Public Turing 

Test to Tell Computers and Humans Apart 

Luis von Ahn, Manuel Blum and John Langford. Telling 

Humans and Computers Apart Automatically. 
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Complexity Class P
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Non-Robustness of TM Complexity
• Computability: all variations on TMs have the 

same computing power

– If there is a multi-tape TM that can decide L, there 

is a regular TM that can decide L.

– If there is a nondeterministic TM that can decide L, 

there is a deterministic TM that can decide L.

• Complexity: variations on TM can solve 

problems in different times

– Is a multi-tape TM faster than a regular TM?

– Is a nondeterministic TM faster than a regular TM?

30Lecture 22: Classy Complexity Classes

Multi-Tape vs. One-Tape TM

Are there problems that are in 

TIME(t(n)) for a multi-tape TM, but 

not in TIME(t(n)) for a one-tape TM?
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Copy Input Problem

Input: w, a string of N bits

Output: ww

Obvious multi-tape algorithm that involves 2N steps:

N steps: walk over the input, copying it to the second tape

N steps: continue to move right, copying the second tape 

contents onto the input tape after the input

Best (?) single-tape algorithm that involves ~2N2 steps:

N iterations: move over the input, marking each symbol

N steps: move to the first non-blank square, write that symbol

N steps: move back to the rightmost marked input symbol

Intuitively is seems impossible to do much better, but hard to prove!
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Theory is about 

Big Questions

If little tweaks to our model change the answers, we might as 

well focus on answering the practical questions for a real 

system and specific problem instance instead.
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Making things Robustier?

• Find a more robust computing model than a TM

– Church-Turing thesis says all mechanical models are 

equivalent (computing power) to a TM

– But, this doesn’t mean there might not be better 

models for complexity

• Make the complexity classes bigger

– Define a complexity class big enough so the little 

tweaks to TMs do not change the answers
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Complexity Class P

P =U
k

TIME(Nk)

P is the class of languages that can be decided 

in Polynomial Time on a deterministic, single-

tape Turing machine.
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Classes in P

a) TIME(N2) 

b) TIME(O(N7))

c) TIME(O(2N))

d) Class of languages that can be decided in 

Polynomial Time by a 2-tape TM 

e) Class of languages that can be decided in 

Polynomial Time by a nondeterministic TM

Unknown! This is the P = NP question.  Focus of next class…

Yes!  We can simulate each 

step of a 2-tape TM by 

making 2 passes over the 

whole tape ~ 2(N+t(n))

(See Theorem 7.8)
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Charge

• PS6 is now posted, due Thursday, April 24

• Office hours tomorrow are in my office, 10-

11am

• Read Sipser Chapter 7

– It is not expected to understand the proof of the 

Cook-Levin Theorem (pages 277-282)

• Thursday (Isabelle Stanton):

– Restating the P = NP question

– How do we make progress in answering it?


