
1

Class 22: Class 22:

ClassyClassy

Complexity Complexity

ClassesClasses

David EvansDavid Evans
http://www.cs.virginia.edu/evanshttp://www.cs.virginia.edu/evans

cs302: Theory of Computationcs302: Theory of Computation

University of Virginia Computer ScienceUniversity of Virginia Computer Science

Office hours

note: my office

hours tomorrow

will be 10-11am

in my office.
PS6 (the last one) is posted now and will be

due Thursday, April 24.

2Lecture 22: Classy Complexity Classes

Menu

• Why 2150?

• Asymptotic Analysis

• Mind vs. Turing Machine (from PS5)

• Complexity Class P

• Complexity Class NP

3Lecture 22: Classy Complexity Classes

Computability Complexity

Decidable

Undecidable

~1800s – 1960s

1900: Hilbert’s Problems

1936: Turing’s Computable Numbers

1957: Chomsky’s Syntactic Structures

(Mostly) “Dead” field

Intractable

Tractable

1960s – 2150?

1960s: Hartmanis and

Stearns: Complexity class

1971: Cook/Levin, Karp: P=NP?

1976: Knuth’s O, Ω, Θ

Very Open and Alive

From last class:

4Lecture 22: Classy Complexity Classes

Predicting Knowledge

• In golden age fields, knowledge doubles every 15

years (read Neil DeGrasse Tyson’s Science’s

Endless Golden Age)

• Hence, in 2158, we should know ~1024 times (10

doublings) what we know today

• So, guessing it will end in ~2150 implies:

– Computational Complexity is a finite field

– What we know today is about 1/1000th what there is

I don’t know if either of these is true, but they seem like reasonable guesses...

5Lecture 22: Classy Complexity Classes

Asymptotic Notation Recap

• Big-O: f ∈ O(g): no faster than

if there exist c, n0 > 0 such that

f(n) ≤≤≤≤ cg(n) for all n ≥ n0.

• Omega: f ∈ Ω(g): no slower than

if there exist c, n0 > 0 such that

f(n) ≥≥≥≥ cg(n) for all n ≥ n0.

• Theta: f ∈ Θ(g) iff f ∈ O(g) and f ∈ Ω(g)

Little-o:

< instead of ≤≤≤≤

6Lecture 22: Classy Complexity Classes

Algorithm Analysis

• What is the asymptotic running time of the

Java-ish procedure below:

int gaussSum (int m) {

int sum = 0;

for (int i = 1; i <= m; i++) {

sum = sum + i;

}

return sum;

}

Good “cs201/cs216” answer:

Θ(n)

What does this mean?

What does it assume?

2

7Lecture 22: Classy Complexity Classes

Algorithm Analysis

• gaussSum is order n: “A function that outputs
the running time of gaussSum when the input
is the value of the input is in Θ(n).

int gaussSum (int m) {

int sum = 0;

for (int i = 1; i <= m; i++) {

sum = sum + i;

}

return sum;

}

Assumes:

m is unbounded

(not true for real Java)

+ is constant time

(not true if m is unbounded)

Note that these assumptions

are mutually inconsistent so the

answer is “wrong” (but useful).

8Lecture 22: Classy Complexity Classes

“Correct”ish Answers

int gaussSum (int m) {

int sum = 0;

for (int i = 1; i <= m; i++) {

sum = sum + i;

}

return sum;

}

Assume m is bounded (e.g.,

32-bit integer as in real

Java). Then, running time of

gaussSum is in O(1).

Assume m is unbounded. Then, the

average running time of the + is in

Θ(log m), so the running time of

gaussSum is in Θ(m log m).

9Lecture 22: Classy Complexity Classes

What are we really measuring?

• Input size: number of tape squares it takes to

write down the input

• Running time: number of steps it takes before

TM enters a final state

• Input size for gaussSum = log m

– Number of bits to represent m (not its magnitude)

– Note: if we used unary it would be size m

Why doesn’t log base matter in asymptotic notations?

10Lecture 22: Classy Complexity Classes

Most Correct Answer

int gaussSum (int m) {

int sum = 0;

for (int i = 1; i <= m; i++) {

sum = sum + i;

}

return sum;

}

Assume the size of the input N

is unbounded. Then, m ~ 2N.

The running time of + is in

Θ(log m) = Θ(N) so the

running time of gaussSum is in

ΘΘΘΘ(2NN) = where N is the size

of the input.

Is ΘΘΘΘ(2NN) = ΘΘΘΘ(2N)?

Left as small challenge problem

(everyone should be able to answer

this using definition of ΘΘΘΘ.)

11Lecture 22: Classy Complexity Classes

Algorithm Analysis
int gaussSum (int m) {

int sum = 0;

for (int i = 1; i <= m; i++) {

sum = sum + i; }

return sum;

}

cs201/cs216 answer: Θ(n)

where n is the value of the input

cs302 answer: in ΘΘΘΘ(2NN) where N is the size of

the input.

cs432 answer: don't analyze Java code, analyze idealized

pseudocode and state assumptions clearly.

12Lecture 22: Classy Complexity Classes

gaussSum Problem

• So, what is the time complexity of the

gaussSum problem?

Input: a positive integer m

Output: sum of the integers from 1 to m.

From the previous analysis, we know an algorithm that

solves it with running time in ΘΘΘΘ(N2N).

This means the time complexity of the problem is in

O(N2N). But it does not give a tight bound.

3

13Lecture 22: Classy Complexity Classes

gaussSum Problem

• Can we get a lower bound?

Input: a positive integer m

Output: sum of the integers from 1 to m.

At a minimum, we need to look at each symbol in the

input. So, there is no algorithm asymptotically faster

than ΘΘΘΘ(N).

This means the time complexity of the problem is in

Ω(N). But it does not give a tight bound.

14Lecture 22: Classy Complexity Classes

gaussSum Problem

• Can we get a tight bound?

Input: a positive integer m

Output: sum of the integers from 1 to m.

The time complexity of the

problem is in Ω(N).

The time complexity of the

problem is in O(N2N).

Ring of

possibilities
Is there a

Θ bound?

15Lecture 22: Classy Complexity Classes

Getting a Tighter Bound

Johann Carl

Friedrich Gauss,

1777-1855

gaussSum(n) = (n + 1)(n/2)

What is the fastest known

multiplication algorithm?

Until 2007: Schönhage-Strassen algorithm

in Θ(N log N log log N)

Today: Fűrer’s algorithm

in Θ(N log N 2O(log*N))

Tomorrow: unknown if there is a faster

multiplication algorithm

16Lecture 22: Classy Complexity Classes

Best Known Bounds

Input: a positive integer m

Output: sum of the integers from 1 to m.

The time complexity of the

problem is in Ω(N).

The time complexity of the problem

is in O(N log N 2O(log*N)).

Ring of

possibilities

Getting a tight bound for a problem is very hard!

Need to prove you have the best possible algorithm.

17Lecture 22: Classy Complexity Classes

Minds vs. Turing Machines

Problem Set 5, Question 6: Many people find the suggestion

that a human mind is no more powerful than a Turing

Machine to be disturbing, but there appear to be strong

arguments supporting this position. … Write a short essay

that counters this argument (although many books have been

written on this question, you should limit your response to no

more than one page). If you reject the premise of this

question either because you do not find it disturbing to think

of your mind as a Turing Machine, or you feel that the only

way to counter this argument is to resort to supernatural

(e.g., religious) notions, you may replace this question with

Sipser’s Problem 5.13.
About 1/5 chose to replace question.

18Lecture 22: Classy Complexity Classes

Most Common Answer:

Randomness

• "…human brain can create true randomness"

• "The outputs of neurons do NOT

deterministically depend on the inputs

because of quantum uncertainty."

4

19Lecture 22: Classy Complexity Classes

Self-Modification

• "… Humans can even learn enough from the

world around them to alter their own

programming."

• "…a TM cannot adapt, and has no way to

change its own rules or states."

Recall a Universal TM can simulate every other TM.

So, it is certainly possible for a TM to simulate a TM that

changes rules and states in response to the input.

20Lecture 22: Classy Complexity Classes

Self-Awareness

Humans are more "cognizant" of their shortcomings than TMs.

There are several problems that humans understand are

impossible to answer, but no TM can simulate the decision

that any of these problems are decidedly unsolvable.

David Horres

I can't help but quote from South Park: "You see, the basis of

all reasoning is the mind's awareness of itself. What we think,

the external objects we perceive, are all like actors that come

on and off stage. But our consciousness, the stage itself, is

always present to us." (Kyle)

Hung-in Lam

21Lecture 22: Classy Complexity Classes

Memory Access

Our brains have the ability to recognize patterns and then use

those patterns to filter new data. Since our brains store

memories primarily through association rather than just

memory addresses, this allows for an integrated, relational

system of memories…. Our memories "fade" over time, yet

can occasionally be brought back…

Eric Montgomery

22Lecture 22: Classy Complexity Classes

Real Time/World Interactions

A mind can interact with physical inputs and outputs in real

time. The brain is able to make decisions in real time; either a

synapse fires or it doesn't. What would happen in a brain

model that waited forever for a single binary decision? Would

the brain-simulating TM ever be able to make all the decisions

necessary for even the tiniest slice of time? Such a TM would

probably be eaten by a hungry woof; how embarrassing for

such a smart machine!

Rachel Miller

"ability to interact with the surrounding environment"

23Lecture 22: Classy Complexity Classes

…ability of the human mind to process analog

inputs. The possible ranges for sound or light

are infinite, and are not stored digitally in the

brain. …

Chris Dodge

Some physicists think space-time can be quantized at

about 10-23 meters and 10-32 seconds. So, in theory a

TM could process analog inputs, but in practice all the

atoms in the universe would not be enough to make

the tape for the TM…

24Lecture 22: Classy Complexity Classes

Resilience

"The brain can function without some of its components,

but a TM cannot…."

Jalysa Conway

"The human mind is also capable of breaking out of an

infinite loop that a TM would be stuck in forever… a

person gets bored, something that no TM can emulate. "

Timothy Kang

5

25Lecture 22: Classy Complexity Classes

Neurons tend to fire in a synchronized way. A group of

neurons in one part of the brain, for example, may

light up at the same time and cause another group to

activate in another region. Finally, neurons are

capable of neurogenesis, the creation of new brain

cells. A TM, no matter how much use it gets, will

always remain a TM. The brain, however, is a muscle

that is influenced by many factors, including usage. In

fact, even the eldest of living humans can avoid mental

breakdown by simply exercising their brains

frequently…
Christopher Andersen

Note: exercising your brain is a good idea for young humans also!

26Lecture 22: Classy Complexity Classes

Would it be useful to have a

computational problem that

humans can solve

but computers cannot solve?

link

link

27Lecture 22: Classy Complexity Classes

Thwarting

Spammers,

Annoying

Humans

CAPTCHA: Completely Automated Public Turing

Test to Tell Computers and Humans Apart

Luis von Ahn, Manuel Blum and John Langford. Telling

Humans and Computers Apart Automatically.

28Lecture 22: Classy Complexity Classes

Complexity Class P

29Lecture 22: Classy Complexity Classes

Non-Robustness of TM Complexity
• Computability: all variations on TMs have the

same computing power

– If there is a multi-tape TM that can decide L, there

is a regular TM that can decide L.

– If there is a nondeterministic TM that can decide L,

there is a deterministic TM that can decide L.

• Complexity: variations on TM can solve

problems in different times

– Is a multi-tape TM faster than a regular TM?

– Is a nondeterministic TM faster than a regular TM?

30Lecture 22: Classy Complexity Classes

Multi-Tape vs. One-Tape TM

Are there problems that are in

TIME(t(n)) for a multi-tape TM, but

not in TIME(t(n)) for a one-tape TM?

6

31Lecture 22: Classy Complexity Classes

Copy Input Problem

Input: w, a string of N bits

Output: ww

Obvious multi-tape algorithm that involves 2N steps:

N steps: walk over the input, copying it to the second tape

N steps: continue to move right, copying the second tape

contents onto the input tape after the input

Best (?) single-tape algorithm that involves ~2N2 steps:

N iterations: move over the input, marking each symbol

N steps: move to the first non-blank square, write that symbol

N steps: move back to the rightmost marked input symbol

Intuitively is seems impossible to do much better, but hard to prove!

32Lecture 22: Classy Complexity Classes

Theory is about

Big Questions

If little tweaks to our model change the answers, we might as

well focus on answering the practical questions for a real

system and specific problem instance instead.

33Lecture 22: Classy Complexity Classes

Making things Robustier?

• Find a more robust computing model than a TM

– Church-Turing thesis says all mechanical models are

equivalent (computing power) to a TM

– But, this doesn’t mean there might not be better

models for complexity

• Make the complexity classes bigger

– Define a complexity class big enough so the little

tweaks to TMs do not change the answers

34Lecture 22: Classy Complexity Classes

Complexity Class P

P =U
k

TIME(Nk)

P is the class of languages that can be decided

in Polynomial Time on a deterministic, single-

tape Turing machine.

35Lecture 22: Classy Complexity Classes

Classes in P

a) TIME(N2)

b) TIME(O(N7))

c) TIME(O(2N))

d) Class of languages that can be decided in

Polynomial Time by a 2-tape TM

e) Class of languages that can be decided in

Polynomial Time by a nondeterministic TM

Unknown! This is the P = NP question. Focus of next class…

Yes! We can simulate each

step of a 2-tape TM by

making 2 passes over the

whole tape ~ 2(N+t(n))

(See Theorem 7.8)

36Lecture 22: Classy Complexity Classes

Charge

• PS6 is now posted, due Thursday, April 24

• Office hours tomorrow are in my office, 10-

11am

• Read Sipser Chapter 7

– It is not expected to understand the proof of the

Cook-Levin Theorem (pages 277-282)

• Thursday (Isabelle Stanton):

– Restating the P = NP question

– How do we make progress in answering it?

