

$N P$ can be useful

- So far, you learnt how to detect "unsolvable" problems (in NP) and solve them anyway by approximation (in P)
- For cryptography we want the opposite: problems that are almost always hard, i.e., cannot be approximated in P
Lecture 25: Complex \rightarrow Secure? Computer Science

Goal: Encryption

- For almost all security schemes we need:
- Encryption / one-way function
secret key

$$
\text { - Decryption } \quad \operatorname{dec}(y, k) \rightarrow x
$$

Motivation

- Many applications require certain tasks to be easy for some and hard for others
- Example: Decryption of encrypted message is easy only when given a secret key

Cryptography is concerned with constructing algorithms that withstand abuse. -Goldreich

Complexity is a powerful tool to "lock out" adversaries.
Basic Idea: Require hard problem to be solved, give hint as key.

Leeture 25: Complex \rightarrow Secure?	2	

Encryption build on Hardness

- Knapsack problem is NP-Complete
- Problem of filing bag with best selection of items
- Recall: Reducible from Subset-Sum
- Enable Encryption: Keep message secret by hiding it in a Knapsack instance

Flawed Security Argument

- Subset Sum is NP-Complete
- Breaking knapsack cipher involves solving a subset sum problem
- Therefore, knapsack cipher is secure

Flaw: NP-Complete means there is no fast general solution. Some instances may be solved quickly.
(Note: Adi Shamir broke knapsack cipher [1982])
Lecture 25: Complex \rightarrow Secure? 7 Computer Science

Cipher Design (cont.)

- A "strong" cipher cannot be broken faster than exhaustive key search (brute force)

$$
\Theta\left(2^{n}\right) \text { time }
$$

- Only possible shortcut: Trade space for time; e.g.:

$$
\Theta\left(2^{n \cdot 3}\right) \text { time }+ \text { space }
$$

Cipher Design

- NP-Completeness is not sufficient for cryptographic hardness Worst-case complexity
- Need solution to usually be hard Average complexity
- Captured in new complexity class: All tractable problems are in BPP
(which only makes sense if $P \neq N P$)
Leture 25: Complex \rightarrow Secure? 8 Computer Science

Results of Insufficient Hardness

- All broken cipher have a gap between worstcase and average hardness
- Estimating average hardness is often impossible (= finding best algorithm for instances of NP-complete problem)
- Next: Analyze cipher, identify complexity, and break it by finding tractable average solution.

Lecture 25: Complex \rightarrow Serne?
10
Computer Science

First: Disclosure

- Secret algorithm can often be found:
- Disassembling software
- Hardware reverse-engineering

This talk: Breaking a cipher once we found it.

Then: Exploitation

- Most secret ciphers are broken after disclosure
- Flaws are very similar in all DIY ciphers (and cryptanalyst spot them in a glimpse)

Non-Linearity

- System of equations that desribes n-bit cipher can have up to $O\left(2^{n}\right)$ terms.
- Only $O(n)$ of these terms are linear.

Linear Non-linear	\approx	$\begin{aligned} & P \\ & N P \end{aligned}$	
Lecture 25: Complex \rightarrow Secure?	15		Ifili Computer Science

The crux of most flaws

- Most weaknesses caused by insufficient non-linearity.
- At the heart of the problem:

LFSRs (linear feedback shift register)

Almost there ...

1. Describe weak parts of cipher as system of equations
2. Brute-Force through complex parts:

Guess-and-Determine attack.
3. Solve system of equations:

MiniSAT is our friend

Solving for 48-bit Crypto-1 key takes 12 seconds; compared to month for brute-force.

Lessons Learned (Crypto)
- Obscurity and proprietary crypto add security
only in the short-run
- (but lack of peer-review hurts later)
- Constraints of small devices make good crypto
extremely hard
- Where are the best trade-offs?
- How much security is needed?
- How can we best introduce non-linearity?
Lecture 25: complex $-\rightarrow$ secure?

Obscurity and proprietary crypto add security only in the short-run

- (but lack of peer-review hurts later)
- Constraints of small devices make good crypto extremely hard
- Where are the best trade-offs?
- How much security is needed?
- How can we best introduce non-linearity?

