Ian Davey Challenge Problem Proof

First, we prove that the grammar does not generate any string in L_{ww}.

Proof by contradiction. Assume that the rules do produce strings in L_{ww}.

Without loss of generality, assume we use $X \rightarrow ZXZ m$ times before using $X \rightarrow 0$ and use $Y \rightarrow ZYZ n$ times before using $Y \rightarrow 1$, where *m* and *n* are any non-negative integer.

Case 1: The first production used is $S_{Even} \rightarrow XY$.

We end up with $Z^m 0Z^m Z^n 1Z^n$ where each Z has yet to generate a terminal. This can be written as $Z^m 0Z^{n+m} 1Z^n$, or $Z^m 0Z^n Z^m 1Z^n$.

For the string to be split into two identical parts w, each w must have equal length, which in this case would be m + n + 1.

For each w to be equal, each Z^m term must generate identical sequences (we'll call this sequence *a*). Each Z^n term must also generate an identical sequences (we'll call this sequence *b*). Each *w* can now be represented as $a\gamma b$, where γ is a single character. γ must be the terminal finally derived from both X and Y.

The only single character that can be derived from X is 0, so when derived from X, $\gamma = 0$. Likewise, when derived from Y, $\gamma = 1$. Therefore, the first *w* would be *a*0*b* and the second *w* would be *a*1*b*.

However, each w is supposed to be identical. Hence, there is a contradiction.

Case 2: The first production used is the $S_{Even} \rightarrow XY$ derivation.

The proof is nearly identical to Case 1, except for swaping X and Y.

The two cases cover all possible derivations, and both lead to contradictions. Hence, the assumption is invalid and the rules cannot derive an element of L_{ww} .

Now, we prove that the grammar does generate all even-length strings in the complement of L_{ww} .

Proof-by-induction on the length of the strings.

We prove the grammar will derive $\{0, 1\}^m 0\{0, 1\}^{m+n} 1\{0, 1\}^n$ and $\{0, 1\}^m 0\{0, 1\}^{m+n} 1\{0, 1\}^n$ which covers all possible strings in the complement of L_{ww} .

Each string s in the complement of L_{ww} has the length |s| = 2(m + n + 1). Therefore, there should be $2^{2(m+n+1)}$ possibilities for any string of length |s| in Σ^* . Since X and Y cannot be the same (two characters in each string), this reduces the number of possibilities to $2^{2(m+n+1)} - 2$.

Basis: The smallest possible strings in the complement of L_{ww} are 10 and 01. Both can be derived using the grammar: $S \rightarrow XY \rightarrow 01$ and $S \rightarrow YX \rightarrow 10$. In the basis step, m = n = 0.

Induction:

Let there be m + 1 Zs derived on either side of the first X or Y. This will make the length of the string 2[(m + 1) + n + 1].

Thus there are $2^{[(m+1)+n+1]}$ possibilities for any string of this length in Σ^* . X and Y still cannot derive to the same terminal, reducing the number of possibilities to $2^{2[(m+1)+n+1]} - 2$.

Now let there be n + 1 Zs derived on either side of the first X or Y. This will make the length of the string 2[(m + (n + 1) + 1]]. Thus there are $2^{[m + (n + 1) + 1]}$ possibilities for any string of this length in Σ^* . X and Y still cannot derive to the same terminal, reducing the number of possibilities to $2^{2[m + (n + 1) + 1]} - 2$.

Now let there be m + 1 and n + 1 Zs derived. This will make the length of the string 2[(m + 1) + (n + 1) + 1]. Thus there are $2^{[(m+1)+(n+1)+1]}$ possibilities for any string of this length in Σ^* . X and Y still cannot derive to the same terminal, reducing the number of possibilities to $2^{2[(m+1)+(n+1)+1]} - 2$.

The only possibilities eliminated for every set of strings with a common length are those which would put the strings in L_{ww} . Therefore, this grammar does indeed describe the complement of L_{ww} .