## Ian Davey Challenge Problem Proof

First, we prove that the grammar does not generate any string in $L_{w w}$.
Proof by contradiction. Assume that the rules do produce strings in $\mathrm{L}_{\mathrm{ww}}$.
Without loss of generality, assume we use $\mathrm{X} \rightarrow \mathrm{ZXZ} m$ times before using $\mathrm{X} \rightarrow 0$ and use $\mathrm{Y} \rightarrow \mathrm{ZYZ} n$ times before using $\mathrm{Y} \rightarrow 1$, where $m$ and $n$ are any non-negative integer.

Case 1: The first production used is $\mathrm{S}_{\text {Even }} \rightarrow \mathrm{XY}$.
We end up with $Z^{m} 0 Z^{m} Z^{n} 1 Z^{n}$ where each $Z$ has yet to generate a terminal. This can be written as $\mathrm{Z}^{m} 0 \mathrm{Z}^{n+m} 1 \mathrm{Z}^{n}$, or $\mathrm{Z}^{m} 0 \mathrm{Z}^{n} \mathrm{Z}^{m} 1 \mathrm{Z}^{n}$.

For the string to be split into two identical parts w, each w must have equal length, which in this case would be $m+n+1$.

For each w to be equal, each $\mathrm{Z}^{m}$ term must generate identical sequences (we'll call this sequence $a$ ). Each $\mathrm{Z}^{n}$ term must also generate an identical sequences (we'll call this sequence $b$ ). Each $w$ can now be represented as $a \gamma b$, where $\gamma$ is a single character. $\gamma$ must be the terminal finally derived from both X and Y .

The only single character that can be derived from $X$ is 0 , so when derived from $X, \gamma=0$. Likewise, when derived from $\mathrm{Y}, \gamma=1$. Therefore, the first $w$ would be $a 0 b$ and the second $w$ would be $a 1 b$.

However, each $w$ is supposed to be identical. Hence, there is a contradiction.
Case 2: The first production used is the $\mathrm{S}_{\mathrm{Even}} \rightarrow \mathrm{XY}$ derivation.
The proof is nearly identical to Case 1, except for swaping X and Y .
The two cases cover all possible derivations, and both lead to contradictions. Hence, the assumption is invalid and the rules cannot derive an element of $\mathrm{L}_{\mathrm{ww}}$.

Now, we prove that the grammar does generate all even-length strings in the complement of $L_{w w}$.

Proof-by-induction on the length of the strings.
We prove the grammar will derive

$$
\{0,1\}^{\mathrm{m}} 0\{0,1\}^{\mathrm{m}+\mathrm{n}} 1\{0,1\}^{\mathrm{n}} \text { and }\{0,1\}^{\mathrm{m}} 0\{0,1\}^{\mathrm{m}+\mathrm{n}} 1\{0,1\}^{\mathrm{n}}
$$

which covers all possible strings in the complement of $\mathrm{L}_{\text {ww }}$.

Each string $s$ in the complement of $L_{w w}$ has the length $|s|=2(m+n+1)$. Therefore, there should be $2^{2(m+n+1)}$ possibilities for any string of length $|s|$ in $\Sigma^{*}$. Since $X$ and $Y$ cannot be the same (two characters in each string), this reduces the number of possibilities to $2^{2(m+n+1)}-2$.

Basis: The smallest possible strings in the complement of $\mathrm{L}_{\mathrm{ww}}$ are 10 and 01. Both can be derived using the grammar: $\mathrm{S} \rightarrow \mathrm{XY} \rightarrow 01$ and $\mathrm{S} \rightarrow \mathrm{YX} \rightarrow 10$. In the basis step, $\mathrm{m}=$ $\mathrm{n}=0$.

## Induction:

Let there be $m+1 \mathrm{Zs}$ derived on either side of the first X or Y. This will make the length of the string $2[(m+1)+n+1]$.

Thus there are $2^{[(m+1)+n+1]}$ possibilities for any string of this length in $\Sigma^{*}$. $X$ and $Y$ still cannot derive to the same terminal, reducing the number of possibilities to $2^{2[(m+1)+n+1]}$ -2 .

Now let there be $n+1 \mathrm{Zs}$ derived on either side of the first X or Y . This will make the length of the string $2\left[(m+(n+1)+1]\right.$. Thus there are $2^{[m+(n+1)+1]}$ possibilities for any string of this length in $\Sigma^{*}$. X and Y still cannot derive to the same terminal, reducing the number of possibilities to $2^{2[m+(n+1)+1]}-2$.

Now let there be $\mathrm{m}+1$ and $\mathrm{n}+1 \mathrm{Zs}$ derived. This will make the length of the string $2[(\mathrm{~m}$ $+1)+(n+1)+1]$. Thus there are $2^{[(\mathrm{m}+1)+(\mathrm{n}+1)+1]}$ possibilities for any string of this length in $\Sigma^{*}$. X and Y still cannot derive to the same terminal, reducing the number of possibilities to $2^{2[(m+1)+(n+1)+1]}-2$.

The only possibilities eliminated for every set of strings with a common length are those which would put the strings in $\mathrm{L}_{\text {ww }}$. Therefore, this grammar does indeed describe the complement of $\mathrm{L}_{\text {ww }}$.

