Liuyi Zhang

Challenge Problem Solution

Theorem: $S_{\text {Even }}$, as defined below, generates all even strings that are not in L_{ww}.
(1) $S_{\text {Even }} \rightarrow X Y \mid Y X$
(2) $X \rightarrow Z X Z \mid 0$
(3) $Y \rightarrow Z Y Z \mid 1$
(4) $Z \rightarrow \mathbf{0} \mid \mathbf{1}$

Lemma 1. $S_{\text {Even }}$ can generate all the strings length equal to $2 n$ ($n>0, n$ is integer) in the following two forms:

$$
Z^{j} \mathbf{0} Z^{j} Z^{k} 1 Z^{k} \text { and } Z^{j} 1 Z^{j} Z^{k} \mathbf{0} Z^{k}
$$

where j, k are integers, $j \geq 0, k \geq 0$, and $2 j+2 k+2=2(j+k+1)=2 n$. This follows from the grammar rules. The first form corresponds to derivations of the form:

$$
S_{\text {Even }} \rightarrow X Y \rightarrow Z X Z Y \rightarrow \ldots \rightarrow Z^{j} X Z^{j} Y \rightarrow Z^{j} 0 Z^{j} Y \rightarrow Z^{j} 0 Z^{j} Z Y Z \rightarrow \ldots \rightarrow Z^{j} 0 Z^{j} Z^{k} Y Z^{k} \rightarrow Z^{j} 0 Z^{j} Z^{k} 1 Z^{k}
$$

$$
(j \text { uses of rule } 2 \mathrm{a}) \quad(\text { by rule } 2 \mathrm{~b}) \quad(k \text { uses of rule } 3 \mathrm{a}) \quad \text { (using rule } 3 \mathrm{~b})
$$

The second form corresponds similarly to derivations that start with $S_{\text {Even }} \rightarrow Y X$.

Since each Z produces either 0 or 1, we can equivalently write the two forms above by replacing $Z^{j} Z^{k}$ with $Z^{k} Z^{j}$ as: $Z^{j} \mathbf{0} Z^{k} Z^{j} Z^{k}$ and $Z^{j} Z^{k} Z^{j} \mathbf{0} Z^{k}$

Lemma 2. We know the grammar could only generate strings in the following format $Z^{j} \mathbf{0} Z^{j} Z^{k} \mathbf{1} Z^{k}$ or $Z^{j} Z^{j} Z^{k} \mathbf{0} Z^{k}$.

Proof. With only X productions $X \rightarrow Z X Z \mid 0$ we can only generate strings in the following format by repeating using the grammar. As there is no other production for X , we can conclude that X $=Z^{j} Z^{j}$

Similarly, with only Y productions $Y \rightarrow Z Y Z \mid 1$ we can only generate strings in the following format $Y=Z^{k} 1 Z^{k}$ by repeating using the grammar. As there is no other rule for Y, we can conclude that $Y=Z^{\mathrm{k}} 1 Z^{\mathrm{k}}$

Combining both parts, with grammar $S_{\text {Even }} \rightarrow X Y \mid Y X$ we know that all strings produced by $\mathrm{S}_{\text {Even }}$ could only be the following format $Z^{j} 0 Z^{j} Z^{k} 1 Z^{k}$ or $Z^{j} 1 Z^{j} Z^{k} 0 Z^{k}$.

Proof:

To prove that $S_{\text {Even }}$ generates $L_{\wedge_{\mathrm{ww}}}$, the language of all even-length strings that are not composed of two matching halves, we observe that for any string $\mathrm{s} \in L_{\wedge_{\mathrm{ww}}}$ there must be some position i in the string where the value of $s[i]$ is different from the value of $s[\mid s / 2+i]$. We show that $S_{\text {Even }}$
can generate all such strings, and generates no strings without a mismatch at some position. There are only two symbols in the alphabet, so these two cases cover all possibilities: $s[i]=\mathbf{0}$ and $s[i]=\mathbf{1}$ where $0 \leq i<|s| / 2$.

Case 1. $s[i]=0$.

First, we show the grammar produces all of the even-length strings in $L_{\wedge_{\mathrm{ww}}}$ where there is some i, $0 \leq i<|s| / 2$, such that $s[i]=\mathbf{0}$ and $s[|s| / 2+i]=\mathbf{1}$. All even length strings t of length $2 n$ can be divided into two equal length strings of length $n: t=t_{1} t_{2}$. Since we are covering the case where $s[i]=0$, and $s[\mid \mathrm{s} / / 2+\mathrm{i}]=1$, all strings have the form $t=Z^{i} \mathbf{0} Z^{k} Z^{i} 1 Z^{k}$ where $n=i+k+1$. From the lemma, $S_{\text {Even }}$ generates all such strings by substituting i and j.

Now, we show that the grammar does not produce any strings in L_{ww}. We prove by contradiction: if t is in L_{ww}, then t_{1} must equal to t_{2}. We know the grammar could only generate strings in the following format $Z^{j} \mathbf{0} Z^{j} Z^{k} Z^{k}$ or $Z^{j} \mathbf{1} Z^{j} Z^{k} \mathbf{0} Z^{k}$ (from Lemma 2). If we separate the string into two equal length strings $t=t_{1} t_{2}$, we can only separate it as $t_{1}=Z^{j} \mathbf{0} Z^{k}$ and $t_{2}=Z^{j} \mathbf{1} Z^{k}$, then, in t_{1}, there must be j symbols in front of the 0 ; same in t_{2}, there are j symbols in font of the 1 . As there will be different alphabet appear on the same position, therefore t_{1} always NOT equal to t_{2}. Thus, we have a contradiction.

Case 2. $s[i]=$ 1. This follows identically to case 1 , except using the second form corresponding to the $S_{\text {Even }} \rightarrow Y X$ rule.

