Liuyi Zhang Challenge Problem Solution

Theorem: S_{Even} , as defined below, generates all even strings that are not in L_{ww} .

(1) $S_{\text{Even}} \rightarrow XY \mid YX$ (2) $X \rightarrow ZXZ \mid \mathbf{0}$ (3) $Y \rightarrow ZYZ \mid \mathbf{1}$ (4) $Z \rightarrow \mathbf{0} \mid \mathbf{1}$

Lemma 1. S_{Even} can generate all the strings length equal to 2n (n > 0, n is integer) in the following two forms:

 $Z^j \mathbf{0} Z^j Z^k \mathbf{1} Z^k$ and $Z^j \mathbf{1} Z^j Z^k \mathbf{0} Z^k$

where *j*, *k* are integers, $j \ge 0$, $k \ge 0$, and 2j+2k+2 = 2(j+k+1) = 2n. This follows from the grammar rules. The first form corresponds to derivations of the form:

 $S_{\text{Even}} \rightarrow XY \rightarrow ZXZY \rightarrow \dots \rightarrow Z^{i}XZ^{i}Y \rightarrow Z^{i}\mathbf{0}Z^{i}Y \rightarrow Z^{j}\mathbf{0}Z^{i}ZYZ \rightarrow \dots \rightarrow Z^{j}\mathbf{0}Z^{j}Z^{k}YZ^{k} \rightarrow Z^{j}\mathbf{0}Z^{j}Z^{k}1Z^{k}$ (*j* uses of rule 2a) (by rule 2b) (*k* uses of rule 3a) (using rule 3b) The second form corresponds similarly to derivations that start with $S_{\text{Even}} \rightarrow YX$.

Since each Z produces either 0 or 1, we can equivalently write the two forms above by replacing $Z^{i}Z^{k}$ with $Z^{k}Z^{j}as$: $Z^{i}0Z^{k}Z^{j}1Z^{k}$ and $Z^{i}1Z^{k}Z^{j}0Z^{k}$

Lemma 2. We know the grammar could only generate strings in the following format $Z^j 0 Z^j Z^k 1 Z^k$ or $Z^j 1 Z^j Z^k 0 Z^k$.

Proof. With only *X* productions $X \to ZXZ \mid \mathbf{0}$ we can only generate strings in the following format by repeating using the grammar. As there is no other production for X, we can conclude that $X = Z^{i}0Z^{j}$

Similarly, with only *Y* productions $Y \to ZYZ \mid \mathbf{1}$ we can only generate strings in the following format $Y = Z^k 1 Z^k$ by repeating using the grammar. As there is no other rule for *Y*, we can conclude that $Y = Z^k 1 Z^k$

Combining both parts, with grammar $S_{\text{Even}} \rightarrow XY \mid YX$ we know that all strings produced by S_{Even} could only be the following format $Z^{j}0Z^{j}Z^{k}1Z^{k}$ or $Z^{j}1Z^{j}Z^{k}0Z^{k}$.

Proof:

To prove that S_{Even} generates L_{ww} , the language of all even-length strings that are *not* composed of two matching halves, we observe that for any string $s \in L_{\text{ww}}$ there must be some position *i* in the string where the value of s[i] is different from the value of s[lsl/2 + i]. We show that S_{Even}

can generate all such strings, and generates no strings without a mismatch at some position. There are only two symbols in the alphabet, so these two cases cover all possibilities: s[i]=0 and s[i]=1 where $0 \le i < |s|/2$.

Case 1. s[i] = 0.

First, we show the grammar produces all of the even-length strings in L_{Aww} where there is some *i*, $0 \le i < |s|/2$, such that s[i] = 0 and s[|s|/2 + i] = 1. All even length strings *t* of length 2n can be divided into two equal length strings of length *n*: $t = t_1t_2$. Since we are covering the case where s[i] = 0, and s[|s|/2 + i] = 1, all strings have the form $t = Z^i 0 Z^k Z^i 1 Z^k$ where n = i + k + 1. From the lemma, S_{Even} generates all such strings by substituting *i* and *j*.

Now, we show that the grammar does not produce any strings in L_{ww} . We prove by contradiction: if t is in L_{ww} , then t_1 must equal to t_2 . We know the grammar could only generate strings in the following format $Z^i \mathbf{0} Z^j Z^k \mathbf{1} Z^k$ or $Z^j \mathbf{1} Z^j Z^k \mathbf{0} Z^k$ (from Lemma 2). If we separate the string into two equal length strings $t=t_1t_2$, we can only separate it as $t_1=Z^j \mathbf{0} Z^k$ and $t_2=Z^j \mathbf{1} Z^k$, then, in t_1 , there must be j symbols in front of the 0; same in t_2 , there are j symbols in font of the 1. As there will be different alphabet appear on the same position, therefore t_1 always NOT equal to t_2 . Thus, we have a contradiction.

Case 2. s[i] = 1. This follows identically to case 1, except using the second form corresponding to the $S_{\text{Even}} \rightarrow YX$ rule.