Proof by Raghu Rajkumar

Theorem: The following grammar produces the language $\{w | |w| \text{ is even } \land w \notin zz\}$

 $\begin{array}{l} S_{Even} \rightarrow XY \mid YX \\ X \rightarrow ZXZ \mid 0 \\ Y \rightarrow ZYZ \mid 1 \\ Z \rightarrow 0 \mid 1 \end{array}$

String indexing formulae, notations and ideas used in proof:

- 1. \forall String s, Odd(lsl) \Rightarrow The middle character of s is indexed by (lsl+1)/2
- 2. u[i] refers to the i^{th} character of u, starting at index 1.
- 3. Two characters of s = uv, |u| = |v| are corresponding $\Leftrightarrow s[i], s[j]$ such that j - i = |s|/2 $\Leftrightarrow s[i], s[j]$ such that s[j] = v[i]

Lemma 1: X and Y produce only odd length strings.

Let *s* be any string such that Even(lsl)

Case 1 (Basis): |s| = 0.

There is no rule $X \to \varepsilon$ or $Y \to \varepsilon$. Hence, the string *s* can not be produced. Case 2 (Induction): |s| > 0.

The only rules that lead to the production of strings greater than length 1 are $X \rightarrow ZXZ$ and $Y \rightarrow ZYZ$. Hence, s = ZtZ, where *t* is an even-length string of length |s - 2|. Repeating this process recursively leads to Case 1, where s^n , $|s^n| = 0$, cannot be produced by any rule.

Therefore, in either case, the string *s* cannot be produced by the grammar. \Rightarrow All strings produced by X and Y are of odd length.

To prove that the grammar recognizes $\{w | |w| \text{ is even } \land w \notin zz\}$ involves proving two parts:

- 1. Odd length strings are not produced by the grammar. This is proved in Part 1.
- 2. No string in L^{ww} is produced by the grammar, and all even strings *not* in L^{ww} are produced by the grammar. These are proved separately in subparts 2a and 2b.

Part 1: Odd length strings are not produced by the grammar.

Let $X \to x$ and and $Y \to y$. The only possible productions for S_{Even} are $S_{Even} \to XY$ and $S_{Even} \to YX$. Hence, the length of the resulting string is |x + y|Odd $(x) \land$ Odd(y) By *Lemma* 1 \Rightarrow Even(|x + y|)Therefore, only even length strings are produced by the grammar.

Part 2a: All even length strings not in L^{ww} are produced by the grammar. Let s = uv such that |u| = |v| = n (say) $\land u \neq v \Leftrightarrow s \notin L^{ww}$ $\Rightarrow \exists i: N | u[i] \neq v[i]$. Let p = 2i-1, q = n - p Then $s = \sum^{(p-1)/2} 1 \sum^{(p-1)/2} \sum^{(q-1)/2} 0 \sum^{(q-1)/2} 0 r s = \sum^{(p-1)/2} 0 \sum^{(p-1)/2} 2 \sum^{(q-1)/2} 1 \sum^{(q-1)/2}$, where the corresponding *i*th characters of *u* and *v* are different. The first *p* characters of the string match the pattern for $X \to Z^{(p-1)/2} 0 Z^{(p-1)/2}$ and the next *q* characters match the pattern for $Y \to Z^{(q-1)/2} 1 Z^{(q-1)/2}$ in the first case, and vice versa for the second case. Hence, $S_{Even} \to XY|YX \to s$. $\Rightarrow \forall$ String *s*, Even(s) $\land s \notin L^{ww} \Rightarrow S_{Even} \to s$

Part 2b: No even length string in L^{ww} is produced by the grammar.

Let $s \in L^{ww}$. Assume that the grammar produces *s*, i.e., $S_{Even} \rightarrow s$. Case 1: $S_{Even} \rightarrow XY \rightarrow^* s$. $X = Z^k 0 Z^k \wedge Y = Z^l 1 Z^l$ $\Rightarrow XY \rightarrow^* s = Z^k 0 Z^k Z^l 1 Z^l = xy$ Let p = 2k + 1, q = 2l + 1; |s| = n = p + q; Midpoint of $x = m_x = (p+1)/2 = k+1$. Midpoint of $y = m_y = (q+1)/2 = l+1$. $s[m_x] = s[k+1] = 0$, $s[m_y] = s[p+l+1] = 0$ $m_y \cdot m_x = p+l \cdot k = k+l+l = (2k+2l+2)/2 = n/2 = |s|/2$ \Rightarrow The characters at m_x and m_y are corresponding characters. Since $s \in L^{ww}$, these corresponding characters should be equal. But we have proved that $s[m_x] = 0 \neq 1 = s[m_y]$. This is a contradiction. Our assumption that the grammar produces *s* is incorrect. \Rightarrow S_{Even} does not derive *s*

Case 2: $S_{Even} \rightarrow YX \rightarrow^* s$.

The proof for this is the same as for Case 1, with X and Y swapped.

Hence, \forall String $s, s \in L^{ww} \Longrightarrow S_{Even}$ does not derive s

Combining parts 1 & 2, the grammar accepts only even length strings $\notin L^{ww}$.