
In Mobile Security Technologies (MoST), San Francisco, May 2013

GuarDroid: A Trusted Path for Password Entry
Tianhao Tong and David Evans

University of Virginia
[tt4cc, evans]@virginia.edu

Abstract—Sensitive online transactions are now frequently
executed using smartphone clients. Whereas users of personal
computers execute these transactions in a browser, smartphone
users tend to use installed apps. These apps use username and
password pairs as the primary authentication method and may
come from untrusted parties, opening users up to attacks that
steal user’s passwords. We present GuarDroid, a system that
protects user’s password from untrusted apps. The key idea is
to prevent apps from seeing passwords directly and establishing
a trusted path between the user and the service that leverages
the smartphone operating system as a trusted computing base.
Our system does not require any modifications to existing apps
or services, while still providing users with high assurances that
they are not providing sensitive passwords to a rogue app.

I. INTRODUCTION

Users are increasingly using applications on smartphones
to conduct sensitive transactions, such as banking, social
networking, and private messaging. Smartphones differ from
traditional personal computers in that their limited interfaces
and small application model lead users to install customized
applications (usually called apps) to conduct these transactions
rather than using a generic browser. This exposes users to new
risks from fraudulent applications that attempt to collect user
credentials. The goal of our work is to establish a trusted path
between the user, through the trusted core of the mobile device,
and onto the intended trusted server in order to protect users
from inadvertently providing passwords to fraudulent apps.
Our solution does not require any modification to current apps
or application servers.

An example of the kind of fraudulent app we are targeting
is the phishing app known as FakeToken [19]. Many banks
today employ two-factor authentication to protect users. In
order to use two-factor authentication, users install a token
generation app from their bank on the smartphone and use this
app to get a one-time token that is used as part of the login
process. This FakeToken app pretends to be the official token
generation app by presenting a very similar UI to the user and
requesting the bank login ID and password. The tricked user
enters her account ID and password to this app for the token,
which the app sends to a server controlled by the attacker.
With this information, the attacker can conduct arbitrary
transactions on these accounts. Another similar example is
Android.Fakeneflic [2] which looks similar to the legitimate
Android Netflix app and requests the user’s ID and password
upon login to send to the attacker’s server.

On traditional computers, users usually execute secure
transactions in a web browser where they can examine the

destination of sensitive data using security indicators. These
trust chains are missing on smartphones apps. Figures 1 and 2
show the difference between the traditional personal computer
environment and a smartphone. When the user tries to log
into Twitter through a traditional PC browser (Figure 1), she
can look at the certificate of the remote server and verify the
identity of the destination; with in-app login on a smartphone
(Figure 2), a user is not able to verify the destination of
sensitive data and must trust the app won’t just send the
password anywhere.

The problem here is that in the application model, the app
gets control of the whole screen (a feature often needed by
games and e-book readers). Any naive approach to designate a
UI component as a trust indicator (analogy to the lock symbol
used by the browser) could be mimicked by a malicious app
by drawing its own UI component that looks exactly like the
trusted UI component.

Felt and Wagner [8] studied the risk of phishing on mobile
devices and raised the concern about the very problem we are
trying to deal with in our paper: the lack of trusted path from
the user to the service. They suggested a possible solution to
this problem that would use a small portion of the screen as a
trusted display for identity indication. However, this solution
would undermine the user experience, especially in apps like
games and video players where users want full screen display.
Our work seeks to enable such a trusted path without requiring
any dedicated screen real estate or hardware modification to
existing devices.

A. Approach

Our idea is to isolate the passwords from untrusted third
party apps by leveraging the operating system of the smart-
phone as a trusted computing base and establishing a trusted
path directly from the user to the app server. The user will
input her password in a trusted input provided by the OS,
and then the password will be encrypted by a secret key
stored in a file protected by system permission. The encrypted
password will be sent to the third party app which does
not have access to the real password. When the third party
app tries to log in to the application server, our system will
intercept the network traffic and spot the encrypted password,
which it replaces with the decrypted password after getting the
destination confirmation from the user. This hides passwords
from untrusted apps while preserving external behavior.

Our approach relies on users learning to only provide
their passwords to the trusted input method. Fraudulent apps

Fig. 1. User can verify certificates on a desktop browser.

Fig. 2. User has no way to verify destination using app login.

may attempt to trick users into entering their password by
popping up an input box with similar user interface as the
system one. Since we do not have a dedicated display to
indicate trusted input, the user has no way to distinguish
whether a password input window is from the system or from
a fraudulent application. Therefore, we need to establish a
trusted path between the user and the smartphone OS.

We establish a trusted path by using a shared secret between
the user and trusted base. To set up the shared secret, we
modify the boot process so the user can select a secret phrase
early in the boot process, before any untrusted app has any
chance to execute. The secret phrase is stored securely by the
operating system and displayed to the user to signal secure
input. The app never sees the entered password, which is only
transmitted to trusted definitions confirmed by the user.

To summarize, the key idea of our system is to hide the

user passwords from untrusted apps. This involves two main
challenges, and they are the main focus of this paper:

1) Establish a trusted path from the user to the smartphone
OS so the user can distinguish input boxes in which a
password can be safely entered.

2) Enable the untrusted app to send the user’s password
to a legitimate application server without exposing the
password to the app itself. This is done by modifying
the outgoing network data and providing trusted desti-
nation confirmation based on TLS/SSL certificates, thus
enabling an end-to-end trusted path between the user and
service.

B. Threat Model

We focus on the goal of protecting the user’s sensitive
input from being stolen by an untrusted third party app on
smartphones.

Trusted Base. We trust the operating system of the smart-
phone but third party apps may be malicious. This conforms
with the trust model in mainstream smartphone OSes. The
operating system should provide file permission protection
that protects files reads and writes between different accounts,
especially system and user-level apps. We assume the mali-
cious app cannot gain the control over the operating system or
break the file permission protection provided by the operating
system. Although this might not always be true (e.g. [1, 20]),
it does not happen very often and is not in the scope of
this work. We assume the system kernel, all system services,
system libraries, and system apps built into the system image
can be trusted.

User Behavior Assumption. We also assume that the user
makes correct security decisions based on the interfaces pre-
sented to them by GuarDroid. There are two places where
we depend on users to make prudent decisions. One is
the GuarDroid Safe Input (explained in Section II-C) which
requires that users only enter passwords into input boxes
display their secret phrases. The other one is the vigilance of
users checking the destination verification dialog (explained in
Section II-E). Section IV reports on a preliminary experiment
on the first part of this assumption (GuarDroid Safe Input).

Model Limitation. We limit the sensitive input GuarDroid
protects to password in our implementation since password is
the most common way of authentication we use on smart-
phone apps and is clear to users to know when to expect
our protection. It can be easily inferred by checking if an
input box is of password-input type. We do not consider the
impersonation problem of the malicious app after login in this
work. Protecting user’s password is valuable. Many real world
attacks [2, 19] only try to collect users’ passwords and abuse
them later in an unexpected time and way. It is hard to track
back to these apps in question. With the passwords protected,
the only way to execute the malicious transaction is on the
device after the user logged into the account normally. The
ability of attack gets limited and this makes the malicious
app easier to be discovered because of the correlation of

2

3rd Party App

SecPhrase
Setup
Image

GSI

SecPhrase

GuarDroid
Proxy

ACL
GuarDroid

Key

Application Svr

Main System Image

GEP
Send through

network

Send over SSL Channel

Trust Base

Untrusted zone

Trusted zone

Fig. 3. The division of GuarDroid components in trusted and untrusted zone

the timing. As soon as the malicious app is discovered and
removed from markets and devices, the app users do not need
to worry about changing their passwords since there will be
no further abuse. It is still possible for a malicious app to
just do the login normally and impersonate the user after this
app gets privileges. GuarDroid does not prevent this directly,
however, it can be prevented using our system if all sensitive
fields (for example, destination bank account and amount in
bank transfers) are properly marked as sensitive input by the
application server. We do not try to solve the problem of
inferring what piece of data is sensitive information.

Next, we explain the details of how to implement this
approach in Android in Section II. Section III evaluates
the compatibility and performance overhead of our system.
Section IV describes a preliminary feasibility study on hu-
man users. We provide some background and recent research
related to this project in Section V.

II. IMPLEMENTATION

We implement our prototype on Android 2.3 and tested
it on a Samsung Google Nexus S phone1. Android gives
every app a unique UID (unless two apps from the same
author agree to share UIDs with each other) and the pro-
cesses of these apps run with this UID. Permission manage-
ment and isolation is thus based on the underlying Linux
separation between different users. We develop GuarDroid
based on a customized Android system called Cyanogen-
Mod7 [4] to leverage some auxiliary tools it provides. The
source code of entire GuarDroid system is available at
https://github.com/ursatong/GuardroidROM/.

A. Overview

GuarDroid involves four stages depicted in Figure 4: setting
up a shared secret phrase between the user and trusted OS
(SecPhrase Setup), GuarDroid Safe Input (GSI), Outgoing
Data Processing, and Destination Confirmation.

SecPhrase Setup (Section II-B). When the phone boots up, it
first boots into a separate system image (Step 1 in Figure 4) to
ask the user to input a secret phrase (SecPhrase) as a shared
secret between the user and the system (Step 2) before any

1The phone was released in December 2010, with a 1GHz Cortex-A8 CPU,
PowerVR SGX540 GPU, 512MB RAM, and 16GB Storage.

SecPhrase Setup
Image

SecPhrase

ACL
GuarDroid

Key

Application
Svr

user

⑵Set SecPhrase

write

⑹ input
password

read

⑽

System Boot

Main System
Image

3rd Party App

GuarDroid
Proxy

GSI

⑴

⑶

⑷

⑺ Send to network

⑸ When
password input

box triggered

Destination
Confirmation

⑻

⑼ User
Confirmation

SecPhrase
Setup

GSI

Outgoing Data Process &
Destination Confirmation

user

user

Fig. 4. The life cycle of an GuarDroid protected event

third party code could run. The SecPhrase is stored in an OS-
protected file. All trusted GuarDroid system UI components
display this SecPhrase to indicate to the user that she is
communicating with a trusted component.

GuarDroid Safe Input (Section II-C). After establishing
the SecPhrase, the phone boots the main GuarDroid system
(Step 3). Whenever the user would enter a password using a
system default password input box (Step 5), our GuarDroid
Safe Input (GSI) is automatically invoked. Since GSI is a
system app, it has access to the SecPhrase and displays it
to the user. Other input methods will fail to mimic the GSI’s
UI because they cannot obtain the SecPhrase. Users should
only enter passwords into the GSI dialog (Step 6), which is
distinguished by displaying the SecPhrase. GSI, after receiving
the password, encrypts it with a secret key stored and protected
by the system permission. We call the resulting encrypted
password the GuarDroid Encrypted Password or GEP. For
benign apps, this should make no difference since they should
not perform any operation based on the clear text of password
other than storing and sending it to the legitimate server.
However, if a malicious app wants to steal the password and
send it to some other server, that server will only receive
a meaningless string and the malicious app has no way to
learn the actual password. While GSI is running, the system
disables access to sensors for any background processes,
mitigating the risk of side-channel attacks such as those using
the accelerometer to infer the password entry [3, 30].

Outgoing Data Process (Section II-D). After this, when the

3

user submits her input (e.g. submits a login page), the app
will typically send the user’s login data over the network to the
application server. We assume the password will be transferred
through TLS/SSL, although it is possible to add support for
other protocols. We set up a global local proxy on the device
so that all network traffic will be redirected to this proxy (Step
7). This local SSL proxy acts like an in-the-middle attack to
intercept raw data in the SSL connection. The proxy examines
the network traffic, searches for patterns that match a GEP
and decrypts then to replace the encrypted password with the
plaintext password in the outgoing traffic.

Destination Confirmation (Section II-E). We need to ensure
the decrypted password is only ever sent to the correct
application server. To do this, the GuarDroid Proxy then asks
the user for destination confirmation based on the destination
server and app package name (Step 8). If the access is allowed
(Step 9), the GEP will be replaced by decrypted password and
then encrypted using the SSL protocol. It then will be sent out
over the network to the confirmed destination (Step 10).

Figure 3 illustrates the division between untrusted and
trusted components in our system. According to our threat
model (Section I-B), we don’t trust the third party app. The
trusted base includes the local system components that cannot
be modified and protected files not readable by non-system
users. The trusted path is extended to the the application server
by the SSL Channel managed by GuarDroid Proxy.

Next we will explain each stage in detail.

B. SecPhrase Setup

We want to set up the SecPhrase as early as possible in the
boot process before any third party app is executed. However,
this stage cannot be too early during the boot process since we
need the display and input drivers to support user interaction
with the system. Since Android is based on Linux, the user-
interface libraries and framework reside in user space. It would
be very difficult to control the system to load these libraries
and then suspend all other processes to safely execute the
SecPhrase setup.

Instead, we leverage the Android recovery image. The
recovery image is a separate partition that Android can boot
into to perform system maintenance routines for the phone like
installing system updates and factory reset [10]. This image
contains basic I/O drivers to enable limited user interaction and
is read-only to any non-root process in the main system. This
image also does not allow execution of any outside code - you
cannot install any third party program in the recovery image.
This makes it an ideal place to implement the SecPhrase Setup.

We modified the code of the recovery image to let the
user select a SecPhrase from a list of randomly generated
words. We call this modified recovery image the SecPhrase-
Setup image. The interface is shown in Figure 5. On our
implementation platform, only three hard-keys are supported
under recovery image: volume up, volume down, and power
representing up, down, and confirm respectively. The touch
screen will not work here. This is the reason why we let users
choose from a list of words instead of letting them input their

Fig. 5. SecPhrase selection under SecPhrase-Setup image

own. The list is generated randomly from a dictionary file with
about 10k words. One noun and one verb list are generated.
The user picks one from each of these. We hypothesize that
this produce a good balance between sufficient entropy to
make it unlikely that an app could guess and user memorabil-
ity. Of course increasing the number of words could lower the
possibility of the SecPhrase being guessed by the malicious
app but it might also become hard to remember for the user.
The user can request a new batch of random words if she
likes none of the displayed ones. After the selection is made,
the SecPhrase will be echoed back for confirmation. Note that
a malicious app cannot mimic the SecPhrase Setup process
because we use power button as selection confirmation. In
main GuarDroid system, the power button will cause the phone
to sleep or shutdown. This behavior cannot be overridden by
any third party app.

The SecPhrase will be stored in Trusted Storage, essentially
a file with root access only. All other system protected files
like GuarDroid Encryption Key, GEP-IV mapping table, and
Access Control List are also stored in the same way.

At early stage of GuarDroid booting process, the system
will look for the SecPhrase. If it cannot find it, it will reboot
the system into the SecPhrase-Setup image. Since the check of
the presence of the file does not require any user interaction,
it can happen in very early stage of boot process as soon as
file system is ready so no third party app can interrupt. We
modified init.rc, a script written in Android Init Language [9]
that guides the set up of Android system and executes the
check as soon as the system image get mounted. If the check
passes, the system continues to boot the main system image
for user use.

The SecPhrase is cleared every time the system shuts down.
Therefore, if the user forgets her SecPhrase or wants to reset
it, she simply needs to reboot her phone.

C. GuarDroid Safe Input

GuarDroid Safe Input (GSI, shown in Figure 6) is a trusted
customized input method built into the system image that

4

accepts the password input from users and completes the
trusted path. It will automatically pop up when the user would
enter a password using the standard password input box, i.e.,
when typing in EditText with inputType = textPassword in
Android. The user enters her password to GSI, which encrypts
the password and returns the GuarDroid Encrypted Password
(GEP) to the app.

Our design leverages the SecPhrase we set up in the previ-
ous section and displays it on the UI of GSI. The user should
only enter her password when the SecPhrase is presented. In
order to remind the user to check the SecPhrase, our design
requires the user to click the SecPhrase before they can enter
anything. Section IV reports on a preliminary experiment on
the design.

To effectively identify and restore GEP in network traf-
fic, GEP will be constructed as: G{Enc(Password, Key)}
where G{...} is a pattern we used to fast locate the possible
GEP in data stream. In this formula Enc(d, k) means to
encrypt data d with key k. In our implementation, we use
AES/CFB8/NoPadding first and then encode the result with
Base64. AES/CFB8/NoPadding is a stream encryption using 8
bits as a block so there is no overhead of extra letters. Encoded
with Base64, the output is all printable ASCII characters. This
is necessary because in many password input implementation,
unprintable binary bytes might produce errors. The Key is a
16-byte key managed by the system generated randomly when
the system is first set. A 16-byte IV required by our chosen
algorithm is randomly generated at the time of encryption. A
table of mapping from Enc(Password, Key) to IV is stored in
the Trusted Storage. In this way, 1/3 overhead over the original
length of password from Base64 and a 3-byte identifier G{...}
are added to the password, which we assume is acceptable in
most apps (Section III-A reports more on the compatibility of
our design).

Our keyboard is a simple keyboard implementation based
on the SoftKeyboard example from the Android SDK. Since
it will only be turned on when entering a password by
the system automatically and restored to the previous input
method after finishing the input, this simple input method
should suffice because it will not impact the user experience
elsewhere. Word prediction and auto-correct are undesirable
features when entering the password.

D. Outgoing Data Processing

After receiving the password, the app will usually send the
password to the corresponding application server. It may save
a local copy, encrypted by its own algorithm or not, but in the
end, it needs to send the password to the application server
to authenticate the user to the service. Since the password
received by the app is encrypted by our GuarDroid system, if
it’s sent to the application server, it will be meaningless.

The way we deal with this problem is to install a local
proxy that decrypts GEPs. All outgoing data is redirected to
this proxy and processed before being sent to the network.
The redirection is done by using iptables commands.

Fig. 6. GuarDroid Safe Input

The proxy looks for patterns that match G{...} to identify
the possible GEPs. Then it looks at the GEP-IV table in the
Trusted Storage to get the appropriate IV and decrypt the
intercepted GEP with the GuarDroid Key. The GEP-IV table
is maintained as a self-balanced binary search tree using GEP
as sorting key for fast index to lower the overhead. For false
positive, the look up will usually fail and the packet will be
sent out untouched although there is still very small chance
that a string in other network traffic happens to match a GEP.
The rate can be lowered by increasing the length of GEP. After
these, the proxy will replace it in a protocol aware manner
(meta-data also needs to be updated per protocol like HTTPS,
SMTP, etc).

Since we are dealing with user passwords, we need to
support TLS/SSL. By default, when using TLS/SSL, the
secure channel is established between the app directly to the
application server. Therefore, our proxy can only see encrypted
data and will be unable to analyze and decrypt the GEP. In
order to analyze such TLS/SSL connections, our local proxy
needs to act as an SSL proxy which generates site certificates
on the fly. As shown in Figure 3, since the GuarDroid Proxy
is a system app and its root CA used to sign those generated
certificates is also built into the system as part of the trusted
base, a user-level app will not be able to access the memory
of the GuarDroid Proxy, nor can it forge the certificates signed
by the GuarDroid Proxy’s root CA. The SSL secure channel
is now between this proxy and the application server. Since
this local proxy is part of the trusted base in our GuarDroid
system, this completes the trusted path from the human user
to the application server, through the proxy.

We only consider data transmission over TLS/SSL. This
does not mean that our GuarDroid system cannot work with
apps that transmit data directly over plain TCP. This can be
achieved by applying the same procedure on plain TCP data
and even easier because we do not need to use the SSL proxy
technique for plain TCP data. But GuarDroid in this case

5

Fig. 7. UI of Destination Confirmation

will have some limitation. One important limitation is that we
will not have trustworthy destination confirmation with TCP
because of the nature of TCP that plain TCP data can be easily
spoofed or intercepted over the network.

We implement this local proxy, GuarDroid Proxy, based on
Sandrop project [26] and Webscarab project [22] and extend
it so that it can find and decrypt the GEP before sending data
to the server.

E. Destination Confirmation

After handling the outgoing data, we also need to ensure that
the password goes to the right place. Otherwise, a malicious
app can just send the password to their own server and get
the clear text. Since the SSL secure channel is between the
application server and the GuarDroid Proxy, the GuarDroid
Proxy examines the certificate chain of the destination server,
shows the user the details of the destination server’s certificate,
and lets the user decide if the data should be sent to this server.
See Figure 7 for an example.

This process is required only for outgoing network traffic
containing a GEP. If the root certificate is not trusted, a serious
warning will be shown to the user. To avoid frequent user
confirmation, a set of ACL files are stored in Trusted Storage
that cache these decisions. It is unnecessary for the Destination
Confirmation and ACL Manager dialogue to display SecPhrase
because writing to ACL files needs system privilege and it is
useless for a malicious party to just mimic the UI of these
system components.

One might wondering since we have destination confirma-
tion, we know where the passwords go, then why we need
all the rest complicated parts of GuarDroid. The reason for
that is with GuarDroid’s protection on password, we will only
need destination confirmation when the password needs to

be decrypted and transmitted over the network. It is okay
to have other network traffics (like Ads, statistical report to
app developer, and other third party library network traffic)
without confirmation as long as it does not ask for the
password. On the other hand, if we do not have the support of
GuarDroid, we need to taint tracking the password which is
very complicated with all the possible transforms a malicious
app can apply to the clear text of password. As a result, we
would need a destination confirmation for every destination
which is confusing and annoying.

III. EVALUATION

We evaluated the compatibility of our system with existing
apps and its the performance overhead.

A. Compatibility

Although we preserve the external behavior of the app so the
application server will see no difference, our design assumes
the app does not depend on the actual password in any way,
other than sending it to the app server. We tested several
popular apps to verify this assumption. Google accounts linked
to Android phone use a special protocol for login. Our system
supports this protocol. We also choose the top 20 free apps
from Google Play under categories of “Communication” and
“Finance” (accessed on Feb 21, 2013). Table I shows the
results. We did not encounter any compatibility problems with
the “Communication” apps (left half of the table). Two of
them login using the Google account linked to Android OS
which does not ask for password input, and six of them do not
require login or authenticate phone with phone number plus
access code in a following SMS, so although there are no
compatibility problems with these apps, our mechanism does
not provide any enhanced security for them. The remaining 12
apps do support entry of a password, and GuarDroid provides
an end-to-end trusted path for these apps.

For the 20 “Finance” apps, two do not require any password
and two ask for an SSN as login credential, which is entered
using standard password input but restricting the input to be
exactly 9 numbers. We were not able to test one app (PNC
Mobile) because it asks for a valid username before letting
us input password. GuarDroid provides enhanced security for
the remaining 11 apps. We found that 3 of them check the
length of password on the client app: Navy Federal (password
length must be between 4-8) [21], Wells Fargo (6-14) [29],
and PayPal (8-20). Although we think it is appalling for
modern online services (especially financial ones) to set a
low maximum length limit for passwords, these constraints
cause problems for our encrypted passwords since they must
satisfy these length constraints. One general solution would
be to ensure that the GEP has the same length as the user-
entered password. Given the need to include an identifying tag
in the GEP, though, this would not be possible. One solution
will be maintaining an identifier-password mapping in Trusted
Storage and use a matching-length tag in place of the GEP. The
security model will be the same however, the reason we choose
encryption over this password table in GuarDroid prototype is

6

TABLE I
APP COMPATIBILITY TEST RESULT

App Name Compatibility Notes App Name Compatibility Notes
Facebook Messenger Yes Chase Mobile Yes
Skype Yes Bank of America Yes
Yahoo! Mail Yes Wells Fargo Mobile Password must be 6-14 chars
Kik Messenger Yes IRS2Go Authenticate with SSN
GO SMS Pro Yes PayPal Password must be 8-20 chars
WhatsApp Messenger Authenticate with SMS MyTaxRefund Authenticate with SSN
Voxer Walkie-Talkie Yes Capital One Mobile Yes
Chrome Android Account Mint Yes
Antivirus Security No Login H & R Block Yes
Google Voice Android Account USAA Mobile Yes
Firefox Browser No Login TurboTax SnapTax Yes
Viber Authenticate with SMS H & R Block 1040EZ Yes
Handcent SMS Yes GEICO App Yes
Yahoo! Messenger Yes Tip N Split Tip Calc No Login
Dolphin Browser Yes U.S. Bank Yes
Pinger Yes PNC Mobile Not tested
Mr. Number-Block No Login Navy Federal Credit Password must be 4-8 chars
Portable Wi-Fi hotspot No Login American Express US Yes
Hotmail Yes Citi Mobile (SM) Yes
Text Me! Yes Discover Mobile Yes

that with encryption approach, we can still keep third party
apps’ “remember password” function working without risking
storing all clear text of password in the phone.

B. Performance

Our implementation uses a client proxy, which involves
significant overhead. However, this is an artifact of our imple-
mentation and would not be necessary if GuarDroid were built
into the OS. We also evaluate the intrinsic costs associated with
scanning traffic for GEPs and rewriting them.

Proxy. We used an app from SpeedTest.net to test the latency
and bandwidth to two servers with and without GuarDroid
Proxy. DC Server has smaller latency than Chicago Server.
We tested 10 times on both servers and the average results are
shown in Table II. The bandwidth is only minimally affected
by the GuarDroid Proxy. The upload speed is 17.0% slower
for DC Server and 21.8% slower for Chicago Server. For both
servers, the overhead of latency is consistently around 50ms,
essentially all of which is due to the need for a client-side
proxy.

GEP decryption. To test the overhead of GEP decryption,
we take 5000 strings and encrypt them as GEPs. We also
setup a local HTTPS server to minimize the influence of the
network. We sent these 5000 strings, one per POST request,
to the server. We tested two groups: with the original proxy
before our modifications and with the GuarDroid proxy that
decrypts every GEP in POST requests. As the result, it takes
280ms on average to send a string over the original proxy to
our server while 288ms via GuarDroid Proxy. We can see that
the overhead of finding GEP and decrypting is only about 3%.

To answer how frequently a packet that looks like a GEP
appears in normal network traffic, we monitored the network
traffic on one of the authors computer. Since we only need to
look for GEP in outgoing data, we only monitored outgoing
links. We recorded 5.5 billion bytes of outgoing data in 3 days

TABLE II
PROXY LATENCY AND BANDWIDTH TEST

DC Server Chicago Server
No Proxy Proxy No Proxy Proxy

Latency (ms) 13.8 63.2 68.7 131.2
Download Speed (kbps) 6698.5 6732.8 5830.4 6059.3
Upload Speed (kbps) 7294.9 6053.7 7573.2 5923.1

and found 2710 GEP pattern matches. This is a rate of about
4.95 × 10−7. The GEP pattern uses three bytes and this rate
is lower than three random printable ASCIIs (95−3 ≈ 1.13×
10−6). When such packets appear, it only cause GuarDroid
extra overhead to check if they are real GEP instead of break
the network traffic and the rate is low enough that the proxy
won’t take too much resources.

From the previous evaluation, we can see that the main
overhead is the latency of the proxy. The latency may have
some impact on apps that establish many small connections
and require high interactiveness like Telnet or real-time online
games. However, apps insensitive to latency or apps that
can mortgage the overhead of establishing connection by
using a connection to transmit large amount of data or setup
connections concurrently like watching videos online won’t
feel significant difference. We believe if we fully integrate the
versatile third party proxy into the OS to eliminate the extra
trip from and to the kernel and put all the proxy in native
code, we can further reduce the overhead. Given the fact that
the bandwidth is not significantly impacted, the low overhead
of GEP detection and decryption, and the rarity of possible
GEP packets in network traffic, the performance of our system
would not be a big concern.

IV. FEASIBILITY STUDY

The integrity of our system depends on users making correct
security decisions based on the interfaces presented to them
by the smartphone. We conducted a small, preliminary human

7

subject feasibility study to evaluate the effectiveness of our
design as a proof of concept. The study focus on evaluating
if our design prevents users from entering their password into
a fake GSI, which can display anything on the screen but not
the SecPhrase. We did not test the human behavior assumption
behind the destination confirmation.

The result shows challenges in training users to look for
SecPhrase before input password and suggests the need for
better UI design.

A. Study Setup

We developed a user-level application that mocks the UI
of real GuarDroid Safe Input as shown in Figure 6 but does
not actually provide any protection for the propose of easier
deployment for the user study.

The participants would use their phone as usual. We re-
placed the default email client on their phone with our own
so that our mock GSI will be triggered when they uses email
app and the mock GuarDroid Safe Input will also launch fake
attacks randomly. These attacks will do no real harm to the
participants. However, they will try to trick the participants by
displaying a fake password input box with some probability.

We tried to recruit as many participants as possible and
make the set up of study as easy as possible. We set up a
website, post information on Craigslist, university and city.
We installed our test system on the participants’ mobile
devices and provided them with either a document or in-
person demonstration of how the system works. To motivate
people join our study, every confirmed registered participants
would get $10.00 for just installing our user study apps. To
simulate their motivation of protecting their password, each
participant will get $1.00 bonus per successful login up to
$40.00 but be penalized $5.00 from the bonus for each login
that leaks password to the simulated attack. However, due to
the resource and time constraints, our user study requires the
user to use their own Android phones with version 2.2 or
higher, replaces their original email client, possibly one of
their most frequently used app, with our modified one which
requires password input much more frequently in order to
gain enough amount of data in reasonable period of time
and they need to use this app for couple of weeks. This is
annoying to many people that they may want to uninstall it.
Also, for some logistical reasons, we could not accept remote
participants and we tried to recruit from outside computer
science major in order to minimum the bias. The combination
of these requirements of having certain device, prolonged
study and local participants not from computer science major
only, causes that we ended up with only 4 persons with valid
data. All of these 4 participants are not computer science
majors and one of them is not from the University. Some of
them took the one month study and logged frequently during
the study and others took the study for a longer time. The
longest one has sent data for 31 weeks.

To simulate the rarity of attacks we lower the probability of
the appearance of the simulated attacks and make sure there
are no simulated attacks in at least 10 initial logins. Otherwise

if the participants see too many attacks, they might be just used
to look for attacks which is often neglected in real world.

The mock GuarDroid Safe Input behaves as described in
Section II-C. It requires the user to click the SecPhrase before
they can proceed to enter the password. The only difference is
that there is a FRAUD bottom on the soft keyboard so when
users think there is an attack, they can report it by clicking
the FRAUD bottom. The mock GSI will then refresh itself so
the next input might or might not be an attack.

There are three types of fake attacks:
1) No-SecPhrase: Displays neither SecPhrase nor any other

error information.
2) Wrong-SecPhrase: Shows wrong SecPhrase.
3) Service-Error: Shows “SecPhrase Service Error” mes-

sage.
We recorded how many times each participant attempts to

login or provides her password to the attack input which means
the intended protection failed.

We do not record any sensitive information including pass-
word from the participants. Statistical data from each user is
transmitted to our server periodically, but in a way that does
not leak any other information about the user’s activities. We
obtained IRB approval2 for this user study. More details about
the setup of feasibility study can be found at http://GuarDroid.
net/index.php/usability-test/how-to-setup-study-environment/.

B. Study Result

Although we did this feasibility user study as a proof of
concept, we were not able to perform a larger user study
with adequately representative number of participants due to
resource and time constrains.

Table III shows the results. We observed 359 finished logins
including normal ones and compromised ones. Among them
57 are attacks (19 are No-SecPhrase, 25 are Wrong-SecPhrase,
and 13 are Service-Error). 16 of the 57 attacks succeeded. 15
of the 16 succeeded attacks are No-SecPhrase and only one
from Service-Error. All of 25 Wrong-SecPhrase attempts are
detected. This indicates that when a SecPhrase is shown to the
users, they remembered to check its correctness.

Although the preliminary user study implies that users have
difficulties in checking for security indicators in our UI design,
we believe one reason for this result could be that the behavior
of No-SecPhrase just looks like all other normal password
input box in current Android system. The participants are so
used to the default Android UI with no SecPhrase that they
sometimes forget to check or get confused this attack with
other login UIs of normal apps they have on their phones.
Our user study suggests the need of a better UI and maybe a
longer training phase.

V. RELATED WORK

App Source Control. Controlling what apps can be loaded
onto the device is one possible solution to the fraud app
problem such as a closed app store model (like iOS). This has

2UVa IRB-SBS Protocol Number: 2011-0273-00

8

http://GuarDroid.net/index.php/usability-test/how-to-setup-study-environment/
http://GuarDroid.net/index.php/usability-test/how-to-setup-study-environment/

TABLE III
FEASIBILITY STUDY RESULT

Logins Simulated Attacks No-SecPhrase Wrong-SecPhrase Service-Error
Fraud Detected Total Fraud Detected Total Fraud Detected Total

Participant 1 142 27 3 12 10 10 5 5
Participant 2 136 15 0 5 7 7 3 3
Participant 3 40 8 0 1 5 5 1 2
Participant 4 41 7 1 1 3 3 3 3

the drawback of restricting what app can do and relying on a
central market but even such a closed model cannot always de-
tect malicious applications. For example, N. Seriot shows how
malicious applications could pass the mandatory Apple Store
review unnoticed and harvest data through officially sanctioned
Apple APIs [28] and Marianne Schultz demonstrated how a
tethering app camouflaged as a flashlight [27] passed the Apple
Store review.

Verifying the author of the apps is another approach. For
example, the author of the client app for Bank of America
should be a verified Bank of America account and if we
trust the verification made by the app market, we trust the
app. However, this eliminates the opportunities of benign third
party apps that provide more convenience to the user. For
instance, users may want to use one application to manage
several different bank accounts. Mint [18] and Android Bank-
ing by J. Peiffer [23] are two examples which can manage
more than half a dozen bank accounts in one app. No single
bank could provide this application. Another example is social
networking apps which have more third party apps that user
may prefer over the official one (take Twitter as an example).
The users of these apps today will worry about if their bank
accounts passwords will be stolen. With our system, the users
can be confident that their passwords will be protected because
it’s isolated from the apps.
Trusted Path. Several works [13, 15]–[17, 31] attempt to
construct trusted paths. In Windows versions with NT kernels,
the combination of Ctrl+Alt+Del, known as Secure Attention
Sequence, is reserved by the system to establish a trusted path
from user to the OS [17]. Similar to this idea, SpoofKiller
from M. Jakobsson and H. Siadati [13] built a trusted path
between the user and the OS on smartphone by pressing the
power button which generates an interrupt to the system. They
maintain a white-list of trusted sites. When the power button
is pressed, the system checks if the focused web page is on
the whitelist. If it is, the password entry proceeds; if not, the
app is terminated. Their solution needs the user to remember
to press the power button whenever they try to input a
password which is very counter-intuitive. Further, maintaining
a whitelist of trusted sites is difficult and SpoofKiller only
targets the browser phishing on smartphones which is a small
fraction of the general problem of smartphone app phishing
we target. Although they did claim the same principles apply
to smartphone apps, it is much more difficult to infer the
destination of data to be sent in app than in browser using
their method.

Flicker [15] leverages the TPM on new PC CPUs as a

dynamic root of trust to execute sensitive code fully isolated
from the untrusted OS and apps. It demonstrates how small
the trusted base can be. However, it fails to link this trusted
path to the human user. Bumpy [16] extends Flicker by
including the keyboard to the trusted base and triggers the
trusted execution by pressing reserved keys on the keyboard.
To complete the trusted path to the user, a smartphone as a
dedicated trusted monitor is used for the user to understand
the transition between protected and unprotected input. The
same idea applies to other projects that use smartphone as
an independent device to verify and authorize the transaction
on the computer [14, 24]. Our solution does not require a
dedicated device as a trusted monitor.
Origin Attestation. QUIRE by Michael Dietz et al. [5] pro-
vides a way to verify the caller of IPC requests in Android. It
annotates the whole call chain to authenticate the origin of an
IPC request. This can be applied to solve the impersonation
problem in our paper by ensuring any input data originates
from the system touch screen event and is fresh. However,
to provide call chain verification over the network, QUIRE
needs RPC attestation by assigning a unique certificate signed
by a trusted certification authority and its corresponding key
to every phone. The application server should be aware of
this and ready to do the check. This requires co-operation
from the server and phone manufacture. It is infeasible to
modify thousands of application servers and assign such a
key to billions of existing phones. GuarDroid can provide a
similar level of protection on impersonation with server and
phone manufacture co-operation, while still providing useful
protection without any modification to existing phones or
servers.
Program Analysis. More generally, to protect sensitive data
from untrusted apps on smartphones, traditional static and
dynamic analysis are applied. For example, PiOS [6] uses
static analysis to detect the leakage of private data on iOS.
It constructs a call graph from the app’s binary and checks
for an execution path from a privacy source to a sink such as
network. However, this model suffers from limited coverage
and cannot accurately solve our problem because if we take
user input as privacy source, it ends up in network which
seems legitimate and the destination of the network traffic may
not be available until run-time. It also depends on a central
organization such as official market to do the analysis for them.
TaintDroid [7], on the other hand, uses dynamic taint analysis
to detect sensitive information leakage. It has four granularity
of taint propagation: variable-, method-, message-, and file-
levels. A malicious app can apply all sorts of transforms on

9

the sensitive input so variable-level taint propagation is needed.
With this, the performance penalty will be high and we might
end up with a lot of false positive of leaking information.
Web Phishing. OAuth [11, 12] and OpenID [25] try to solve
web phishing problem by providing authentication without
exposing login credentials. This won’t prevent smartphone app
phishing because when the third party tries to access some
private information from the service provider, it still needs to
redirect the user to log onto the service provider’s page to
obtain the key and the malicious app still can fake this UI
by implementing this in WebView where no security indicator
can be found.

VI. CONCLUSION

GuarDroid is designed to protect a user’s password from
being stolen by fraudulent smartphone apps without requiring
any modification to existing apps or application servers. We
believe end to end trusted paths will provide strong security
benefits for end users, but establishing such paths also requires
cooperation from users. Our small preliminary usability study
reveals the challenges in training users to recognize security-
critical interfaces, and points to the need for well-designed
interfaces and training use habits.

Availability

The modified Android kernel including the GuarDroid safe
input mechanisms, as well as our experimental email client, is
available under an open source license from http://GuardRoid.
net.

Acknowledgments

This work was supported by grants from the National Science
Foundation, Google, and a MURI award from the Air Force
Office of Scientific Research. The authors thank Alf Weaver
for helpful comments on the work.

REFERENCES

[1] Anonymous. ADB Setuid Exhaustion Attack.
http://c-skills.blogspot.com/2008/01/evilness-of-setuidgetuid.html.

[2] Irfan Asrar. Will Your Next TV Manual Ask You to Run a Scan
Instead of Adjusting the Antenna?
http://www.symantec.com/connect/blogs/will-your-next-tv-manual-ask-
you-run-scan-instead-adjusting-antenna, October 2011.

[3] Liang Cai and Hao Chen. On the Practicality of Motion-Based
Keystroke Inference Attack. In Fifth International Conference on Trust
and Trustworthy Computing, 2012.

[4] CyanogenMod. CyanogenMod 7. http://www.cyanogenmod.org/.

[5] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S.
Wallach. QUIRE: Lightweight Provenance for Smart Phone Operating
Systems. USENIX Security Symposium, 2011.

[6] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna.
PiOS: Detecting Privacy Leaks in iOS Applications. In 18th Network
and Distributed System Security Symposium, 2011.

[7] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. TaintDroid: an
Information-flow Tracking System for Realtime Privacy Monitoring on
Smartphones. In 9th USENIX Conference on Operating Systems
Design and Implementation, 2010.

[8] Adrienne Porter Felt and David Wagner. Phishing on mobile devices.
In Web 2.0 Security and Privacy, 2011.

[9] Google. Android source tree. https:
//github.com/android/platform system core/blob/master/init/readme.txt,
2012.

[10] Google. Recovery System - Android Developers. http:
//developer.android.com/reference/android/os/RecoverySystem.html,
2012.

[11] E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849
(Informational), April 2010. Obsoleted by RFC 6749.

[12] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749
(Proposed Standard), October 2012.

[13] Markus Jakobsson and Hossein Siadati. SpoofKiller: You Can Teach
People How to Pay, but Not How to Pay Attention. In Workshop on
Socio-Technical Aspects in Security and Trust, 2012.

[14] Mohammad Mannan and P. van Oorschot. Using a Personal Device to
Strengthen Password Authentication from an Untrusted Computer. In
11th Financial Cryptography and Data Security, 2007.

[15] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter,
and Hiroshi Isozaki. Flicker: An Execution Infrastructure for TCB
Minimization. In ACM European Conference in Computer Systems
(EuroSys), April 2008.

[16] Jonathan M. McCune, Adrian Perrig, and Michael K. Reiter. Safe
Passage for Passwords and Other Sensitive Data. In Network and
Distributed Systems Security, February 2009.

[17] Microsoft. How Interactive Logon Works.
http://technet.microsoft.com/en-us/library/cc780332(v=ws.10).aspx,
January 2009.

[18] Mint.com. Mint - Personal Finance. https://www.mint.com/, 2012.

[19] Ryan Naraine. Remote-controlled Android Malware Stealing Banking
Credentials. http://www.zdnet.com/blog/security/remote-controlled-
android-malware-stealing-banking-credentials/10804, March 2012.

[20] National Vulnerability Database. Udev Before 1.4.1 Does Not Verify
Whether a NETLINK Message Originates from Kernel Space, Which
Allows Local Users to Gain Privileges by Sending a NETLINK
Message from User Space. CVE-2009-1185, August 2009.

[21] Navy Federal Credit Union. Password Confidentiality.
https://www.navyfederal.org/account-management/.

[22] OWASP. OWASP Web Scarab Project. https:
//www.owasp.org/index.php/Category:OWASP WebScarab Project.

[23] Jeff Peiffer. Android Banking.
https://market.android.com/details?id=com.jpeiffer.banking.chase, 2011.

[24] T. Pullar-Strecker. NZ Bank Adds Security Online. https://www.
rsasecurity.com/products/securid/whitepapers/PHISH WP 0904.pdf,
2004.

[25] David Recordon and Drummond Reed. OpenID 2.0: a Platform for
User-Centric Identity Management. In Second ACM Workshop on
Digital Identity Management, 2006.

[26] Sandrop. Sandrop - Secure Android Proxy.
http://code.google.com/p/sandrop/.

[27] Marianne Schultz. Handy Light: Tethering App Camouflaged as
Flashlight. http://appshopper.com/blog/2010/07/20/handy-light-
tethering-app-camouflaged-as-flashlight/, 2010.

[28] Nicolas Seriot. iPhone Privacy. In Black Hat DC, 2010.

[29] Wells Fargo and Company. Online Banking Enrollment Questions.
https://www.wellsfargo.com/help/faqs/enroll faqs.

[30] Zhi Xu, Kun Bai, and Sencun Zhu. TapLogger: Inferring User Inputs
on Smartphone Touchscreens Using On-Board Motion Sensors. In
Fifth ACM Conference on Security and Privacy in Wireless and Mobile
Networks, 2012.

[31] Zishuang (Eileen) Ye, Sean Smith, and Denise Anthony. Trusted Paths
for Browsers. ACM Transactions on Information and System Security,
May 2005.

10

http://GuardRoid.net
http://GuardRoid.net
http://c-skills.blogspot.com/2008/01/evilness-of-setuidgetuid.html
http://www.symantec.com/connect/blogs/will-your-next-tv-manual-ask-you-run-scan-instead-adjusting-antenna
http://www.symantec.com/connect/blogs/will-your-next-tv-manual-ask-you-run-scan-instead-adjusting-antenna
http://www.cyanogenmod.org/
https://github.com/android/platform_system_core/blob/master/init/readme.txt
https://github.com/android/platform_system_core/blob/master/init/readme.txt
http://developer.android.com/reference/android/os/RecoverySystem.html
http://developer.android.com/reference/android/os/RecoverySystem.html
http://technet.microsoft.com/en-us/library/cc780332(v=ws.10).aspx
https://www.mint.com/
http://www.zdnet.com/blog/security/remote-controlled-android-malware-stealing-banking-credentials/10804
http://www.zdnet.com/blog/security/remote-controlled-android-malware-stealing-banking-credentials/10804
https://www.navyfederal.org/account-management/
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://market.android.com/details?id=com.jpeiffer.banking.chase
https://www.rsasecurity.com/products/securid/whitepapers/PHISH_WP_0904.pdf
https://www.rsasecurity.com/products/securid/whitepapers/PHISH_WP_0904.pdf
http://code.google.com/p/sandrop/
http://appshopper.com/blog/2010/07/20/handy-light-tethering-app-camouflaged-as-flashlight/
http://appshopper.com/blog/2010/07/20/handy-light-tethering-app-camouflaged-as-flashlight/
https://www.wellsfargo.com/help/faqs/enroll_faqs

	Introduction
	Approach
	Threat Model

	Implementation
	Overview
	SecPhrase Setup
	GuarDroid Safe Input
	Outgoing Data Processing
	Destination Confirmation

	Evaluation
	Compatibility
	Performance

	Feasibility Study
	Study Setup
	Study Result

	Related Work
	Conclusion
	References

