

Biggest Number Game

- When I say "GO", write down the biggest number you can in 30 seconds.
- Requirement:
 - Must be an exact number
 - Must be defined mathematically
- Biggest number wins!

What's so special about computers?

Toaster Science?

"Computers" before WWII

Mechanical Computing

Modeling Computers

Input

Without it, we can't describe a problem

Output

Without it, we can't get an answer

Processing

Need a way of getting from the input to the output

Memory

Need to keep track of what we are doing

Modeling Input

Turing's Model

"Computing is normally done by writing certain symbols on paper. We may suppose this paper is divided into squares like a child's arithmetic book."

Alan Turing, *On computable numbers, with an application to the Entscheidungsproblem*, 1936

Modeling Pencil and Paper

How long should the tape be?

Modeling Output

- Blinking lights are cool, but hard to model
- Use the tape: output is what is written on the tape at the end

*Except for practical limits like memory size, time, display, energy, etc.

- There exists some Turing machine that can simulate *any* mechanical computer
- Any computer that is powerful enough to simulate a Turing machine, can simulate any mechanical computer

- Can it add?
- Can it carry out any computation?
- Can it solve any problem?

Universal Computing Machine 2^{21-1} 4^{21-1} <th> What This Means Your cell phone, watch, iPod, etc. has a processor powerful enough to simulate a Turing machine A Turing machine can simulate the world's most powerful supercomputer Thus, your cell phone can simulate the world's most powerful supercomputer (it'll just take a lot longer and will run out of memory) </th>	 What This Means Your cell phone, watch, iPod, etc. has a processor powerful enough to simulate a Turing machine A Turing machine can simulate the world's most powerful supercomputer Thus, your cell phone can simulate the world's most powerful supercomputer (it'll just take a lot longer and will run out of memory)
In Theory Are there problems computers can't solve?	 The "Busy Beaver" Game Design a Turing Machine that: Uses two symbols (e.g., "0" and "1") Starts with a tape of all "0"s Eventually halts (can't run forever) Has N states Goal: machine runs for as many steps as possible before eventually halting
Busy Beaver: N = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0

- Output: BB(N)
 - The maximum number of steps a Turing Machine with N states can take before halting

Is it possible to design a Turing Machine that solves the Busy Beaver Problem?

The Halting Problem

Winning the "Biggest number" game: BB(BB(BB(BB(111111111))))

• Input: a description of a Turing Machine

BB(3) = 21

BB(4) = 107

BB(5) = Unknown! Best so far is 47,176,870 BB(6) > 10²⁸⁷⁹

Discovered 2007

• Output: "1" if it eventually halts, "0" if it never halts, starting on a tape full of "0"s.

Is it possible to design a Turing Machine that **solves** the Halting Problem?

"Solves" means for all inputs, the machine finishes and produces the right answer.

If it halts, it doesn't halt! If it doesn't halt, it halts!

- If it ever halts, it must halt by now

• ... but we know that is impossible, so it must be impossible to computer BB(N)

The BB numbers are so big you can't even compute them!

Recap

- A *computer* is something that can carry out well-defined steps:
 - Read and write on scratch paper, follow rules, keep track of state
- All computers are equally powerful
 - If a machine can simulate any step of another machine, it can simulate the other machine (except for physical limits)
 - What matters is the *program* that defines the steps

In Practice

Are there problems (real) computers can't solve?

Sure...all the undecidable problems. Are there others?

Pegboard Problem

Pegboard Problem

Input: a configuration of *n* pegs on a cracker barrel style pegboard (of size large enough to hold the pegs)

Output: if there is a sequence of jumps that leaves a single peg, output that sequence of jumps. Otherwise, output **false**.

How hard is the Pegboard Problem?

How much work is the Pegboard Problem? Upper bound: O(n!)Try all possible permutations Lower bound: $\Omega(n)$ Must at least look at every peg Tight bound: $\Theta(?)$ No one knows!

Complexity Class P "Tractable"

Class P: problems that can be solved in a *polynomial* ($< an^k$ for some constants a and k) number of steps by a deterministic TM.

Easy problems like sorting, genome alignment, and simulating the universe are all in **P**.

Complexity Class NP

Class NP: Problems that can be solved in a polynomial number of steps by a *nondeterministic* TM.

Omnipotent: If we could try all possible solutions at once, we could identify the solution in polynomial time.

Omniscient: If we had a magic guess-correctly procedure that makes every decision correctly, we could devise a procedure that solves the problem in polynomial time.

NP Problems

- Can be solved by just trying all possible answers until we find one that is right
- Easy to quickly check if an answer is right
 Checking an answer is in P
- The pegboard problem is in NP
 We can easily try ~n! different answers
 We can check if a guess is correct in O(n) (check all n jumps are legal)

Is the Pegboard Problem in **P**?

No one knows!

We can't find a $O(n^k)$ solution. We can't prove one doesn't exist.

Gene Reading Machines

- One read: about 700 base pairs
- But...don't know where they are on the chromosome

Complexity Classes

Class P: problems that can be solved in polynomial time by deterministic TM

Easy problems like simulating the universe are all in **P**.

Class NP: problems that can be solved in polynomial time by a nondeterministic TM. Includes all problems in **P** and some problems possibly outside **P** like the Pegboard puzzle.

Problem Classes if P = NP:

P = NP?

 Is P different from NP: is there a problem in NP that is not also in P

- If there is one, there are infinitely many

- Is the "hardest" problem in NP also in P
 If it is, then every problem in NP is also in P
- The most famous unsolved problem in computer science and math

- Listed first on Millennium Prize Problems

NP-Complete Problems

- Easy way to solve by trying all possible guesses
- If given the "yes" answer, quick (in P) way to check if it is right
- If given the "no" answer, no quick way to check if it is right
 - No solution (can't tell there isn't one)
 - No way (can't tell there isn't one)

This part is hard to prove: requires showing you could use a solution to the problem to solve a known NP-Complete problem.

Give up?

No way to solve an NP-Complete problem (best known solutions being $O(2^n)$ for $n \approx 20$ Million)

