

Biggest Number Game

- When I say "GO", write down the biggest number you can in 30 seconds.
- Requirement:
- Must be an exact number
- Must be defined mathematically
- Biggest number wins!

What's so special about computers?

Toaster Science?

"Computers" before WWII

Mechanical Computing

Modeling Input

Modeling Computers

Input

Without it, we can't describe a problem

Output

Without it, we can't get an answer

Processing

Need a way of getting from the input to the output

Memory

Need to keep track of what we are doing

Turing's Model

"Computing is normally done by writing certain symbols on paper. We may suppose this paper is divided into squares like a child's arithmetic book."

Alan Turing, On computable numbers, with an application to the Entscheidungsproblem, 1936

Modeling Pencil and Paper

How long should the tape be?

Modeling Output

- Blinking lights are cool, but hard to model
- Use the tape: output is what is written on the tape at the end

Modeling Processing (Brains)

Modeling Processing

Evaluation Rules

Given an input on our tape, how do we evaluate to produce the output
What do we need:
Read what is on the tape at the current square
Move the tape one square in either direction
Write into the current square

Modeling Processing (Brains)
Follow simple rules Remember what you are doing
"For the present I shall only say that the justification lies in the fact that the human memory is necessarily limited." Alan Turing

Church-Turing Thesis

- All mechanical computers are equally powerful*
*Except for practical limits like memory size, time, display, energy, etc.
- There exists some Turing machine that can simulate any mechanical computer
- Any computer that is powerful enough to simulate a Turing machine, can simulate any mechanical computer

Power of Turing Machine

- Can it add?
- Can it carry out any computation?
- Can it solve any problem?

Performing Addition

- Input: a two sequences of digits, separated by + with \# at end.
e.g., \# $129352+63594$ \#
- Output: sum of the two numbers
e.g., \# 192946 \#

Addition Program

Find the rightmost digit of the first number:

Power of Turing Machine

\checkmark Can it add?

- Can it carry out any computation?
- Can it solve any problem?

Universal Machine

Result tape of running M on Input

Universa
 Machine

A Universal Turing Machine can simulate any Turing Machine running on any Input!

Manchester Illuminated Universal Turing Machine, \#9 from http://www.verostko.com/manchester/manchester.html

Universal Computing Machine

2-state, 3 -symbol Turing machine proved universal by Alex Smith in 2007

What This Means

- Your cell phone, watch, iPod, etc. has a processor powerful enough to simulate a Turing machine
- A Turing machine can simulate the world's most powerful supercomputer
- Thus, your cell phone can simulate the world's most powerful supercomputer (it'll just take a lot longer and will run out of memory)

The "Busy Beaver" Game

- Design a Turing Machine that:
- Uses two symbols (e.g., " 0 " and " 1 ")
- Starts with a tape of all " 0 "s
- Eventually halts (can't run forever)
- Has N states
- Goal: machine runs for as many steps as possible before eventually halting

Busy Beaver: $\mathrm{N}=1$

$B B(1)=1$ Most steps a 1-state machine that halts can make

$B B(2)=6$

6-state machine found by Buntrock and Marxen, 2001

Best found before 2001, only 925 digits!

In Dec 2007, Terry and Shawn Ligocki beat this: 2879 digits!

300232771652356282895510301834134018514775433724675250037338 180173521424076038326588191208297820287669898401786071345848 280422383492822716051848585583668153797251438618561730209415 15079138311034353164641077912209800837164477363289374225531 5512602325117225903457015508730368365463087415599822516129 S3125830691378607273670708190160825534077040039226593073997 22317015477535862985042171251337852708622311268067797375179 239375785200176667922468399885592036293376774476087012846 2935547780631640160185578448850769027944542798006152693167泥 282336339314242325592486700118506716581303423271748965426 546326563343142323255248701185061651303423271748565426 6040979173073716688827281435904639445605928175254048321109 53176574702776062858289156568392295963586263654139383856764 851765747027760628582891565683922959638626365413938385676 2805139496555440988465712274329619608083680533131039 15849680 1059214262166961455282724442921746454946389169113965316 892660611709290048580677566178715752354594049016719278069832 86522332923541370293059667996001319376698551683848851474625 5206615939797639351028965232958039408224497877451453204358 588661593979763935102896523295803940023673203101744986550732泿 24105454849658410961574031211440611088975349899156714888681 256601808624668771209855307705482536743406267175676007038 922117434932633444773138783714023735898712790278288377198260 380065105075792925239453450622999208297575584893448886278127 629044163292251815410053522246084552761513383934623129083266 949377380950466643121689746511996847681275076313206
(1730 digits)

Busy Beaver Numbers

Winning the "Biggest number" game: $\mathrm{BB}(\mathrm{BB}(\mathrm{BB}(\mathrm{BB}(111111111))))$

Computing Busy Beaver Numbers

- Input: N (number of states)
- Output: BB(N)
- The maximum number of steps a Turing Machine with N states can take before halting

Is it possible to design a Turing Machine that solves the Busy Beaver Problem?

The Halting Problem

- Input: a description of a Turing Machine
- Output: " 1 " if it eventually halts, " 0 " if it never halts, starting on a tape full of " 0 "s.

Is it possible to design a Turing Machine that solves the Halting Problem?

Example

0 (it never halts)
"Solves" means for all inputs, the machine finishes and produces the right answer.

Example

Impossible to make Halting Problem Solver

- If it outputs " 0 " on the input, the input machine would halt (so " 0 " cannot be correct)
- If it outputs " 1 " on the input, the input machine never halts (so " 1 " cannot be correct)

If it halts, it doesn't halt!
If it doesn't halt, it halts!

Impossibility Proof!

Busy Beaver is Impossible Too!

- If you could solve it, could solve Halting Problem:
- Input machine has N states
- Compute BB(N)
- Simulate input machine for $\mathrm{BB}(\mathrm{N})$ steps
- If it ever halts, it must halt by now
- ... but we know that is impossible, so it must be impossible to computer $\mathrm{BB}(\mathrm{N})$

[^0]
Recap

- A computer is something that can carry out well-defined steps:
- Read and write on scratch paper, follow rules, keep track of state
- All computers are equally powerful
- If a machine can simulate any step of another machine, it can simulate the other machine (except for physical limits)
- What matters is the program that defines the steps

Pegboard Problem

How much work is the Pegboard Problem?

Try all possible permutations
Lower bound: $\quad \Omega(n)$
Must at least look at every peg
Tight bound: $\Theta($?)
No one knows!

Upper bound: $O(n!)$

Pegboard Problem

Input: a configuration of n pegs on a cracker barrel style pegboard (of size large enough to hold the pegs)

Output: if there is a sequence of jumps that leaves a single peg, output that sequence of jumps. Otherwise, output false.

How hard is the Pegboard Problem?

Orders of Growth

Orders of Growth

Orders of Growth

I do nothing that a man of unlimited funds, superb physical endurance, and maximum scientific knowledge could not do.

- Batman (may be able to solve intractable problems, but computer scientists can only solve tractable ones for large n)

Complexity Class P
 "Tractable"

Class P: problems that can be solved in a polynomial (<an for some constants a and k) number of steps by a deterministic TM.

Easy problems like sorting, genome alignment, and simulating the universe are all in \mathbf{P}.

Complexity Class NP

Class NP: Problems that can be solved in a polynomial number of steps by a nondeterministic TM.

Omnipotent: If we could try all possible solutions at once, we could identify the solution in polynomial time.

Omniscient: If we had a magic guess-correctly procedure that makes every decision correctly, we could devise a procedure that solves the problem in polynomial time.

NP Problems

- Can be solved by just trying all possible answers until we find one that is right
- Easy to quickly check if an answer is right - Checking an answer is in \mathbf{P}
- The pegboard problem is in NP

We can easily try ${ }^{\sim} n$! different answers
We can check if a guess is correct in $O(n)$ (check all n jumps are legal)

Is the Pegboard Problem in P?

No one knows!

We can't find a $O\left(n^{k}\right)$ solution.
We can't prove one doesn't exist.

Gene Reading Machines

- One read: about 700 base pairs
- But...don't know where they are on the chromosome

Genome Assembly

Input: Genome fragments (but without knowing where they are from)
Ouput: The full genome

Genome Assembly

Input: Genome fragments (but without knowing where they are from)
Ouput: The smallest genome sequence such that all the fragments are substrings.

Common Superstring

Input: A set of n substrings and a maximum length k.
Output: A string that contains all the substrings with total length $\leq k$, or no if no such string exists.

Common Superstring

- In NP:
- Easy to verify a "yes" solution: just check the letters match up, and count the superstring length
- In NP-Complete:
- Similar to Pegboard Puzzle!
- Could transform Common Superstring problem instance into Pegboard Puzzle instance!

Common Superstring

 Input: A set of n substrings and a maximum length k.Output: A string that contains all the substrings with total length $\leq k$, or no if no such string exists.

Complexity Classes

Class P: problems that can be solved in polynomial time by deterministic TM Easy problems like simulating the universe are all in \mathbf{P}.
Class NP: problems that can be solved in polynomial time by a nondeterministic TM. Includes all problems in \mathbf{P} and some problems possibly outside \mathbf{P} like the Pegboard puzzle.

Problem Classes if $\mathrm{P}=\mathrm{NP}$:

Simulating Universe:
$O\left(n^{3}\right)$

NP-Complete Problems

- Easy way to solve by trying all possible guesses
- If given the "yes" answer, quick (in P) way to check if it is right
- If given the "no" answer, no quick way to check if it is right
- No solution (can't tell there isn't one)
- No way (can't tell there isn't one)

This part is hard to prove: requires showing you could use a solution to the problem to solve a known NPComplete problem.

Problem Classes if $P \neq N P$:

$$
P=N P ?
$$

- Is P different from NP: is there a problem in NP that is not also in P
- If there is one, there are infinitely many
- Is the "hardest" problem in NP also in P
- If it is, then every problem in NP is also in P
- The most famous unsolved problem in computer science and math
- Listed first on Millennium Prize Problems

No way to solve an NP-Complete problem (best known solutions being $\mathrm{O}\left(2^{n}\right)$ for n ≈ 20 Million)

Give up?

[^0]: The BB numbers are so big you can't even compute them!

