
What Every Biologist, What Every Biologist,

Chemist, and Poet Chemist, and Poet

Should Know about Should Know about

Computer ScienceComputer Science

David EvansDavid Evans

UVaCompBioUVaCompBio

25 April 201125 April 2011

www.cs.virginia.edu/evanswww.cs.virginia.edu/evans

Biggest Number Game

• When I say “GO”, write down the biggest

number you can in 30 seconds.

• Requirement:

– Must be an exact number

– Must be defined mathematically

• Biggest number wins!

Countdown Clock

STOPSTOPSTOPSTOP

What’s so special about computers?

Apollo Guidance

Computer (1969)

Colossus (1944)

Cray-1 (1976)

Palm Pre (2009)

Flickr: louisvolant

Apple II (1977)

Honeywell Kitchen Computer (1969)

Motorola Xoom (2011)

Toaster Science? “Computers” before WWII

Mechanical Computing Modeling Computers

Input

Without it, we can’t describe a problem

Output

Without it, we can’t get an answer

Processing

Need a way of getting from the input to the output

Memory

Need to keep track of what we are doing

Modeling Input

Engelbart’s mouse and keypad

Punch Cards

Altair BASIC Paper Tape, 1976

Turing’s Model

“Computing is normally done
by writing certain symbols on
paper. We may suppose this
paper is divided into squares
like a child’s arithmetic book.”

Alan Turing, On computable
numbers, with an application to
the Entscheidungsproblem, 1936

Modeling Pencil and Paper

C S S A 7 2 3

How long should the tape be?

... ...

Modeling Output

• Blinking lights are

cool, but hard to

model

• Use the tape:

output is what is

written on the tape

at the end

Connection Machine CM-5, 1993

Modeling Processing (Brains)

Look at the

current state of

the computation

Follow simple

rules about what

to do next

Modeling Processing

Evaluation Rules

Given an input on our tape, how do we evaluate to
produce the output

What do we need:

Read what is on the tape at the current square

Move the tape one square in either direction

Write into the current square

0 0 1 1 0 0 1 0 0 0

Is that enough to model a computer?

Modeling Processing (Brains)

Follow simple rules
Remember what you

are doing

“For the present I shall
only say that the
justification lies in the fact
that the human memory
is necessarily limited.”

Alan Turing

Turing’s Model: Turing Machine

1

Start

2

Input: #
Write: #

Move: ←

1 0 1 1 0 1 1... ...1 0 1 1 0 1 1 1

Input: 1
Write: 0

Move: ←

Input: 1
Write: 1

Move: →

Input: 0
Write: 0

Move: → 3

Input: 0
Write: #

Move: Halt

Infinite Tape: Finite set of symbols, one in each square

Can read/write one square each step

Controller:

Limited (finite)

number of states

Follow rules based

on current state

and read symbol

Write one square

each step, move

left or right or halt,

change state

Church-Turing Thesis
• All mechanical computers are equally powerful*

• There exists some Turing machine that can

simulate any mechanical computer

• Any computer that is powerful enough to

simulate a Turing machine, can simulate any

mechanical computer

*Except for practical limits like memory size, time, display, energy, etc.

Power of Turing Machine

• Can it add?

• Can it carry out any computation?

• Can it solve any problem?

Performing Addition

• Input: a two sequences of digits, separated by

+ with # at end.

e.g., # 1 2 9 3 5 2 + 6 3 5 9 4 #

• Output: sum of the two numbers

e.g., # 1 9 2 9 4 6 #

Addition Program

Find the rightmost digit of the first number:

A: look

for +Start

+, +, L

B: read

last digit

0, 0, R

1, 1, R

9, 9, R

...

Read Write Move

C0

0, X, R

C9

9, X, R

C1

1, X, R

...

Addition, Continued

Find the rightmost digit of the second number:

C4

4, X, R

Must duplicate this for each first digit – states keep track of first digit!

look for #

1, 1, RX, X, R ...

#, #, R
D4: read

last digit

E4
0, X, R

E7

3, X, R

6, X, R E10

......

Power of Turing Machine

�Can it add?

• Can it carry out any computation?

• Can it solve any problem?

Universal Machine

Description of a Turing Machine M Input

Universal

Machine

Result tape of running M on Input

A Universal Turing Machine can simulate

any Turing Machine running on any Input!

Manchester Illuminated Universal Turing Machine, #9

from http://www.verostko.com/manchester/manchester.html

Universal Computing Machine

2-state, 3-symbol Turing machine proved
universal by Alex Smith in 2007

What This Means

• Your cell phone, watch, iPod, etc. has a

processor powerful enough to simulate a

Turing machine

• A Turing machine can simulate the world’s most

powerful supercomputer

• Thus, your cell phone can simulate the world’s

most powerful supercomputer (it’ll just take a

lot longer and will run out of memory)

Are there problems computers

can’t solve?

In Theory
The “Busy Beaver” Game

• Design a Turing Machine that:

– Uses two symbols (e.g., “0” and “1”)

– Starts with a tape of all “0”s

– Eventually halts (can’t run forever)

– Has N states

• Goal: machine runs for as many steps as
possible before eventually halting

Tibor Radó, 1962

Busy Beaver: N = 1

A
Start

Input: 0
Write: 1
Move: Halt

0 0 0 0 0 0 0 0
... ...

0 0 0 0 0 0 0 0 0

H

BB(1) = 1 Most steps a 1-state machine that halts can make

A
Start

B

Input: 0
Write: 1
Move: →

0 0 0 0 0 0 0 0
... ...

0 0 0 0 0 0 0 0 0

Input: 0
Write: 1
Move: ←

H

Input: 1

Write: 1

Move: Halt

Input: 1

Write: 1

Move: ←

BB(2) = 6

A
Start

B
C

D
E

F

0/1/R

1/0/L

0/0/R

1/0/R

0/1/L 1/1/R

0/0/L

1/0/L

0/0/R

1/1/R

0/1/L

H

1/1/H

6-state machine found by Buntrock and Marxen, 2001

AStart

B

C

D
E

F

0/1/R

1/0/L

0/0/R

1/0/R

0/1/L 1/1/R

0/0/L

1/0/L

0/0/R

1/1/R

0/1/L

H

1/1/H

300232771652356282895510301834134018514775433724675250037338

180173521424076038326588191208297820287669898401786071345848

280422383492822716051848585583668153797251438618561730209415

487685570078538658757304857487222040030769844045098871367087

615079138311034353164641077919209890837164477363289374225531

955126023251172259034570155087303683654630874155990822516129

938425830691378607273670708190160525534077040039226593073997

923170154775358629850421712513378527086223112680677973751790

032937578520017666792246839908855920362933767744760870128446

883455477806316491601855784426860769027944542798006152693167

452821336689917460886106486574189015401194034857577718253065

541632656334314242325592486700118506716581303423271748965426

160409797173073716688827281435904639445605928175254048321109

306002474658968108793381912381812336227992839930833085933478

853176574702776062858289156568392295963586263654139383856764

728051394965554409688456578122743296319960808368094536421039

149584946758006509160985701328997026301708760235500239598119

410592142621669614552827244429217416465494363891697113965316

892660611709290048580677566178715752354594049016719278069832

866522332923541370293059667996001319376698551683848851474625

152094567110615451986839894490885687082244978774551453204358

588661593979763935102896523295803940023673203101744986550732

496850436999753711343067328676158146269292723375662015612826

924105454849658410961574031211440611088975349899156714888681

952366018086246687712098553077054825367434062671756760070388

922117434932633444773138783714023735898712790278288377198260

380065105075792925239453450622999208297579584893448886278127

629044163292251815410053522246084552761513383934623129083266

949377380950466643121689746511996847681275076313206

(1730 digits)

Best found before

2001, only 925

digits!

In Dec 2007, Terry

and Shawn Ligocki

beat this: 2879

digits!

Busy Beaver Numbers

BB(1) = 1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5) = Unknown!

Best so far is 47,176,870

BB(6) > 102879

Discovered 2007

Winning the “Biggest number” game: BB(BB(BB(BB(111111111))))

flickr: climbnh2003

Computing Busy Beaver Numbers

• Input: N (number of states)

• Output: BB(N)

– The maximum number of steps a Turing Machine

with N states can take before halting

Is it possible to design a Turing Machine

that solves the Busy Beaver Problem?

The Halting Problem

• Input: a description of a Turing Machine

• Output: “1” if it eventually halts, “0” if it never

halts, starting on a tape full of “0”s.

Is it possible to design a Turing Machine that solves the

Halting Problem?

“Solves” means for all inputs,

the machine finishes and

produces the right answer.

Example

A
Start

B

0/0/R

H

1/1/H

0/0/L

0 (it never

halts)

Halting

Problem

Solver

Halting

Problem

Solver

Halting

Problem

Solver

Example Impossibility Proof!

Halting

Problem

Solver

HXY

Halting

Problem

SolverF

0, 0, H1, 0, R

*, *, L

*, *, R

Impossible to make

Halting Problem Solver

• If it outputs “0” on the input, the input machine

would halt (so “0” cannot be correct)

• If it outputs “1” on the input, the input machine

never halts (so “1” cannot be correct)

If it halts, it doesn’t halt!

If it doesn’t halt, it halts!

Busy Beaver is Impossible Too!

• If you could solve it, could solve Halting

Problem:

– Input machine has N states

– Compute BB(N)

– Simulate input machine for BB(N) steps

– If it ever halts, it must halt by now

• ... but we know that is impossible, so it must

be impossible to computer BB(N)

The BB numbers are so big you can’t even compute them!

Recap

• A computer is something that can carry out
well-defined steps:

– Read and write on scratch paper, follow rules,
keep track of state

• All computers are equally powerful

– If a machine can simulate any step of another
machine, it can simulate the other machine
(except for physical limits)

– What matters is the program that defines the
steps

Are there problems (real)

computers can’t solve?

In Practice

Sure…all the undecidable problems. Are there others?

Pegboard Problem Pegboard Problem

Input: a configuration of n pegs on a cracker

barrel style pegboard (of size large enough to

hold the pegs)

Output: if there is a sequence of jumps that

leaves a single peg, output that sequence of

jumps. Otherwise, output false.

How hard is the Pegboard Problem?

How much work is the

Pegboard Problem?

Upper bound: O(n!)

Try all possible permutations

Lower bound: Ω (n)

Must at least look at every peg

Tight bound: Θ(?)

No one knows!

Orders of Growth

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

logn n

nlogn n^2

n^3 2^n

insertsort

simulating

universe

quicksort

pegboard puzzle

2n < n!

Orders of Growth

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

logn n

nlogn n^2

n^3 2^n

insertsort

si
m

u
la

ti
n

g
 u

n
iv

e
rs

e

quicksort

pegboard

puzzle

Orders of Growth

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

logn n

nlogn n^2

n^3 2^n

simulating universe

Pegboard

puzzle

“tractable”

“intractable”

I do nothing that a man of unlimited funds, superb physical

endurance, and maximum scientific knowledge could not do.

– Batman (may be able to solve intractable problems, but computer

scientists can only solve tractable ones for large n)

Complexity Class P

“Tractable”

Class P: problems that can be solved in a

polynomial (< ank for some constants a and k)

number of steps by a deterministic TM.

Easy problems like sorting, genome

alignment, and simulating the universe are

all in P.

Complexity Class NP

Class NP: Problems that can be solved in a
polynomial number of steps by a
nondeterministic TM.

Omnipotent: If we could try all possible solutions at once,
we could identify the solution in polynomial time.

Omniscient: If we had a magic guess-correctly procedure
that makes every decision correctly, we could devise a
procedure that solves the problem in polynomial time.

NP Problems

• Can be solved by just trying all possible
answers until we find one that is right

• Easy to quickly check if an answer is right

– Checking an answer is in P

• The pegboard problem is in NP

We can easily try ~n! different answers

We can check if a guess is correct in O(n)
(check all n jumps are legal)

Is the Pegboard Problem in P?

No one knows!

We can’t find a O (nk) solution.

We can’t prove one doesn’t exist.

Reading the Genome

Whitehead Institute, MIT

Gene Reading Machines

• One read: about 700 base pairs

• But…don’t know where they are on the

chromosome

AGGCATACCAGAATACCCGTGATCCAGAATAAGC
Actual

Genome

ACCAGAATACCRead 1

TCCAGAATAARead 2

TACCCGTGATCCARead 3

Genome Assembly

Input: Genome fragments (but without

knowing where they are from)

Ouput: The full genome

ACCAGAATACCRead 1

TCCAGAATAARead 2

TACCCGTGATCCARead 3

Genome Assembly

Input: Genome fragments (but without

knowing where they are from)

Ouput: The smallest genome sequence such

that all the fragments are substrings.

ACCAGAATACCRead 1

TCCAGAATAARead 2

TACCCGTGATCCARead 3

Common Superstring
Input: A set of n substrings and a

maximum length k.

Output: A string that contains all the

substrings with total length ≤ k, or no if no

such string exists.

ACCAGAATACC

TCCAGAATAA

TACCCGTGATCCA
TACCCGTGATCCA

TCCAGAATAA

ACCAGAATACC

n = 26
ACCAGAATACCCGTGATCCAGAATAA

Common Superstring
Input: A set of n substrings and a

maximum length k.

Output: A string that contains all the

substrings with total length ≤ k, or no if no

such string exists.

ACCAGAATACC

TCCAGAATAA

TACCCGTGATCCA

n = 25

Not possible

Common Superstring

• In NP:

– Easy to verify a “yes” solution: just check the

letters match up, and count the superstring length

• In NP-Complete:

– Similar to Pegboard Puzzle!

– Could transform Common Superstring problem

instance into Pegboard Puzzle instance!

Intractable Problems

1

100

10000

1E+06

1E+08

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+28

1E+30

2 4 8 16 32 64 128

n! 2n

n2

n log n

today
2022

time

since

“Big

Bang”

log-log scale

P

Complexity Classes

Class P: problems that can be solved in

polynomial time by deterministic TM

Easy problems like simulating the

universe are all in P.

Class NP: problems that can be solved in

polynomial time by a nondeterministic TM.

Includes all problems in P and some

problems possibly outside P like the

Pegboard puzzle.

Problem Classes if P ≠ NP:

P

NP

Sorting: Θ(n

log n)

Simulating Universe:

O(n3)

Pegboard:

O(n!) and Ω(n)

Find Best: Θ(n)

Θ(n)

How many problems

are in the Θ(n) class?

How many problems

are in P but not

in the Θ(n) class?

How many problems

are in NP but not

in P?

infinite

infinite

infinite

Problem Classes if P = NP:

P

Sorting: Θ(n

log n)

Simulating Universe:

O(n3)

Pegboard:

ΘΘΘΘ(nk)

Find Best: Θ(n)

Θ(n)

How many problems

are in the Θ(n) class?

How many problems

are in P but not

in the Θ(n) class?

How many problems

are in NP but not

in P?

infinite

0

infinite

P = NP?

• Is P different from NP: is there a problem in NP

that is not also in P

– If there is one, there are infinitely many

• Is the “hardest” problem in NP also in P

– If it is, then every problem in NP is also in P

• The most famous unsolved problem in

computer science and math

– Listed first on Millennium Prize Problems

NP-Complete Problems

• Easy way to solve by trying all possible guesses

• If given the “yes” answer, quick (in P) way to check if it

is right

• If given the “no” answer, no quick way to check if it is

right

– No solution (can’t tell there isn’t one)

– No way (can’t tell there isn’t one)

This part is hard to prove: requires showing you could

use a solution to the problem to solve a known NP-

Complete problem.

Give up?

No way to solve

an NP-Complete

problem (best

known solutions

being O(2n) for n

≈ 20 Million)
1

100

10000

1E+06

1E+08

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+28

1E+30

2 4 8 16 32 64 128

2n
time

since

“Big

Bang”

Questions

/

Plug

67

www.computingbook.org

