

A Research Agenda for Scientific Foundations of Security

David Evans University of Virginia NITRD Post-Oakland Program 25 May 2011

2½ years ago...

NSF/IARPA/NSA Workshop on the Science of Security

http://sos.cs.virginia.edu/

Philosophical Questions

(Usually Not Worth Discussing*)

Is there science in computer system security?

Yes, but of course there should be more.

Alchemy (700-~1660)

Well-defined, testable goal (turn lead into gold)

Established theory (four elements: earth, fire, water, air)

Methodical experiments and lab techniques (Jabir ibn Hayyan in 8th century)

Wrong and unsuccessful...but led to modern chemistry.

Realistic Goal?

Can we be a *real* science like physics or chemistry?

Unlikely – humans will always be a factor in security.

How far can we get without modeling humans?

How far can we get with simple models of human capabilities and behavior?

Some Questions a Science of Security Should Be Able to Answer

Resilience: Given a system *P* and an attack class *A*, is there a way to:

Prove that P is not vulnerable to any attack in A?Construct a system P' that behaves *similarly* to P except is not vulnerable to any attack in A?

Establishing Improvement

How can we determine if a system Q is "more secure" than system P?

Meaning of "Science"

Systematization of Knowledge

Ad hoc point solutions vs. general understanding Repeating failures of the past with each new platform, type of vulnerability

Scientific Method

Process of hypothesis testing and experiments Building abstractions and models, theorems

Universal Laws

Widely applicable Make strong, quantitative predictions

Meaning of "Science"

Systematization of Knowledge

Ad hoc point solutions vs. general understanding Repeating failures of the past with each new platform, type of vulnerability

Scientific Method

Process of hypothesis testing and experiments Building abstractions and models, theorems

Universal Laws

Widely applicable Make strong, quantitative predictions

Experimentation

Security experiments require **adversary models** Need to improve adversary models Coalesce knowledge of real adversaries Canonical attacker models (c.f., crypto) Design for **reproducibility**

meaningfulness and robustness

"When you can measure what you are speaking about, and express it in numbers, you know something about it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts advanced to the stage of science." Lord Kelvin

Large increases in cost with questionable increases in performance can be tolerated only in race horses and [computer security].

Lord Kelvin

Metrics: Promising Approaches?

Comparative metrics Attack Surface [Howard; Manadhata & Wing, TSE May 2011] Experimental metrics more systematic "red team" approaches Economic metrics Active research community; WEIS Epidemiological metrics model spread over network, but need assumptions Entropy/Computational complexity metrics Define attacker search space; automated diversity

Meaning of "Science"

Systematization of Knowledge

Ad hoc point solutions vs. general understanding Repeating failures of the past with each new platform, type of vulnerability

Scientific Method

Process of hypothesis testing and experiments Building abstractions and models, theorems

Universal Laws

Widely applicable Make strong, quantitative predictions

Lots of progress in reasoning about correctness

Systems fail when attackers find ways to **violate assumptions** used in proof

- Need formal methods that make assumptions explicit in a useful way
- Combining formal methods with enforcement mechanisms that enforce assumption

Degabriele, Paterson, and Watson. Provable Security in the Real World in IEEE S&P Magazine SoS issue]

Formal Methods Approaches

- **Refinement:** Can we develop refinement approaches (design → ... → implementation) that **preserve security properties** the way they are used to preserve correctness properties now?
- **Program analysis:** What security properties can be established by dynamic and static analysis?
 - How can computability limits be overcome using hybrid analysis, system architectures, or restricted programming languages?

Summary

Systematization of Knowledge

Valuable and achievable: need the right incentives for community

Scientific Method

Progress in useful models; big challenges in constructing security experiments

Universal Laws

Uncertainty if such laws exist; long way to go for meaningful quantification.

http://www.cs.virginia.edu/evans