

Feasible Privacy for Lightweight RFID Systems

David Evans work with Karsten Nohl University of Virginia

SPAR Seminar Johns Hopkins University 17 October 2007

	UPC Bar Code	EPC Gen 2 RFID	
Identities	8-12 digits (product identity)	64-128 bits (item identity)	
Reading	Optical Scanner	Wireless Reader	
Tag Cost	Ink, Paper (\$0.00001?)	Circuit, Antenna (\$0.05)	
www.cs.virginia	www.cs.virginia.edu/evans/talks/spar07 2		

CRC Does Not Provide Privacy $x_1, x_2 \in X_g$ $A_1 = \operatorname{CRC}_g(K_1 \parallel R_1) = (K_1 \parallel R_1) \oplus x_1$ $A_1 \oplus A_2 = ((K_1 \oplus K_2) \parallel (R_1 \oplus R_2)) \oplus x_1 \oplus x_2$ If two readings were from same tag: $A_1 \oplus A_2 \oplus (00... \parallel R_1 \oplus 00... \parallel R_2) = x_1 \oplus x_2$ $\operatorname{CRC}_g(A_1 \oplus A_2 \oplus (00... \parallel R_1 \oplus 00... \parallel R_2)) = \underbrace{\operatorname{CRC}_g(x_1 \oplus x_2)}_{0}$ Otherwise, non-zero (with high probability)

