
(A Somewhat
Self-Indulgent)

Splint
Retrospective

David Evans

University of Virginia

25 October 2010

Splint Pre-History

• Pre-history
1973: Steve Ziles – algebraic specification of set

1975: John Guttag’s PhD thesis: algebraic specifications
for abstract datatypes

1983: Jeanette Wing’s PhD thesis: two-tiered
specifications – separate program interface from
underlying semantics

• 1993: John Guttag/Jeanette Wing seminar
Larch family specification, theorem prover

interface specification languages (including LCL)

Formal verifiers are
too expensive and time consuming…

Effort RequiredLow Unfathomable

Formal VerifiersFormal Verifiers

B
u

gs
 D

et
ec

te
d

none

all

Compilers

Splint offers a low-effort Alternative

Effort RequiredLow Unfathomable

Formal VerifiersFormal Verifiers

B
u

gs
 D

et
ec

te
d

none

all

Compilers

1 March 2004 Static Analysis 5

Security Flaws

Malformed

Input

16%
Resource

Leaks

6%

Format

Bugs

6%

Buffer

Overflows

19%

Access

16%

Pathnames

10%

Symbolic

Links

11%

Other

16%

Reported flaws in Common Vulnerabilities and
Exposures Database, Jan-Sep 2001.
[Evans & Larochelle, IEEE Software, Jan 2002.]

190 Vulnerabilities
Only 4 having to do with crypto
108 of them could have been

detected with simple
static analyses!

(Almost) Everyone Hates Specifications

• Hard to understand

• Lots of strange notations

• Don’t match what the code does

• Can’t even run them

(Almost) Everyone Likes Types

• Easy to Understand

• Easy to Use

• Quickly Detect Many Programming Errors

• Useful Documentation

• …even though they are lots of work!

– 1/4 of text of typical C program is for types One type per
reference

System or programmer

defines checking rules
Language defines
checking rules

State changes along
program paths

Type of reference
never changes

AttributesTypes

Many attributes per
reference

Approach

• Programmers add “annotations” (formal
specifications)
– Simple and precise
– Describe programmers intent:

• Types, memory management, data hiding, aliasing,
modification, null-ity, buffer sizes, security, etc.

• Splint detects inconsistencies between
annotations and code
– Simple (fast!) dataflow analyses
– Intraprocedural: except for annotations
– Unsound and incomplete

Sample Annotation: only

• Reference (return value) owns storage

• No other persistent (non-local) references to it

• Implies obligation to transfer ownership

• Transfer ownership by:

– Assigning it to an external only reference

– Return it as an only result

– Pass it as an only parameter: e.g.,

extern void free (only void *);

extern only char *gptr;
extern only out null void *malloc (int);

Example

1 int dummy (void) {

2 int *ip= (int *) malloc (sizeof (int));

3 *ip = 3;

4 return *ip;

5 }

extern only null void *malloc (int); in library

Splint output:
dummy.c:3:4: Dereference of possibly null pointer ip: *ip

dummy.c:2:13: Storage ip may become null
dummy.c:4:14: Fresh storage ip not released before return
dummy.c:2:43: Fresh storage ip allocated

Example: Buffer Overflows

• Most commonly exploited security vulnerability

– 1988 Internet Worm

– Still the most common attack
• Code Red exploited buffer overflow in IIS

• >50% of CERT advisories, 23% of CVE entries in 2001

• Attributes describe sizes of allocated buffers

• Heuristics for analyzing loops

• Found several known and unknown buffer
overflow vulnerabilities in wu-ftpd

Adding Data Abstraction to C

• Warnings if code depends on the
representation of an abstract type

• Biggest payoff in maintainability for minimal
effort

typedef /*@abstract@*/ /*@immutable@*/ char *mstring;

Defining Properties to Check

• Many properties can be described in terms of
state attributes

– A file is open or closed

• fopen: returns an open file

• fclose: open → closed

• fgets, etc. require open files

– Reading/writing – must reset between certain
operations

Defining Openness
attribute openness

context reference FILE *

oneof closed, open

annotations

open ==> open closed ==> closed

transfers

open as closed ==> error

closed as open ==> error

merge open + closed ==> error

losereference

open ==> error "file not closed"

defaults

reference ==> open

end

Cannot abandon FILE
in open state

Object cannot be open
on one path, closed on
another

Specifying I/O Functions

/*@open@*/ FILE *fopen

(const char *filename,

const char *mode);

int fclose (/*@open@*/ FILE *stream)

/*@ensures closed stream@*/ ;

char *fgets (char *s, int n,

/*@open@*/ FILE *stream);

Checking

• Simple dataflow analysis

• Intraprocedural – except uses annotations to
alter state around procedure calls

• Integrates with other Splint analyses (e.g.,
nullness, aliases, ownership, etc.)

Splint Success/Failure
splint.org visits (last 12 months)

Academic impact: over 1000 citations (4 papers with > 200 each)
Practice impact:

still used, mostly in embedded software development (C)
incorporated in popular Linux distributions, commercial products

“Splint-inspired” tools are widely used: PREfix/PREfast, Fortify, FindBugs
Failures:

no slippery slope to more advanced uses of formal methods
did not build a self-maintaining open source community

FindBugs
http://findbugs.sourceforge.net

Slide from Bill Pugh’s talk (2009)

Static/Dynamic Analysis:
Past, Present and Future
Verification Grand Challenge Workshop
SRI Menlo Park
22 February 2005

David Evans
University of Virginia

Computer Science

Original slides: with updates in orange boxes

Static/Dynamic Analysis 21

1

10

100

1000

10000

100000

1000000

10000000

100000000

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

The Past: Trends

L
in
e
s o

f S
o
u
rce

 C
o
d
e FL Proofs

LCLint

Splint

“Loss of Ambition”

“Faster Machines”

Static/Dynamic Analysis 22

The Present

• Microsoft PREfix/fast, SLAM→SDV

• ASTRÉE (Cousot) – Airbus A380
Acquired by MathWorks, 2007

$35M in 2008

$41M in 2008

Acquired by IBM, 2009

Static/Dynamic Analysis 23

The Present
• Static Analysis: good at checking generic

requirements (types, buffer overflows, …)

• Dynamic Analysis: good at checking assertions
inserted by programmer

• Bad at knowing what properties to check

– Automatic inference techniques

– Grand Challenge Repository

• No good techniques for combining static and
dynamic analyses A few since 2005!

Concolic Testing [Sen et al., 2007], SAGE (MSR)

The Future: Predictions for 2015

1. Software vendor will lose a major lawsuit
because of a program bug

2. Someone will come up with a cool name like
“VerXifiedProgramming” and sell a lot of books
on program verification

3. No more buffer overflows in major commercial
software
– Brian Snow at 20th Oakland conference (1999)

predicted we will still be talking about buffer
overflows in 2019

Static/Dynamic Analysis 24

Has this happened?

Still waiting…but 5 years left!

SANS list 2010: Buffer overflows are still #3
but…not in OWASP top ten

Static/Dynamic Analysis 25

Predictions for 2015

4. Standard compilers prevent most concurrency
problems

5. Programmers will still make dumb mistakes
and resist change

6. “Good” CS degree programs will:

– Incorporate verification into their first course

– Include a course on identifying and checking
program properties

Still a long way off…but lots of work going on

Static/Dynamic Analysis 26

Making Predictions
Never make predictions, especially about the future.

– Casey Stengel

The best way to predict the future is to invent it.
– Alan Kay, 1971

Our plan and our hope was that the next generation of
kids would come along and do something better than
Smalltalk around 1984 or so… But a variety of different
things conspired together, and that next generation
actually didn’t show up.

– Alan Kay, 2005

