
1

Redundant

Computing for

Security

David Evans

University of Virginia

Yahoo! Tech Talk

16 October 2008

Work with Ben Cox, Anh Nguyen-Tuong,

Jonathan Rowanhill, John Knight, and

Jack Davidson

2

The Basic Idea

Input
(Possibly

Malicious)

Server
Variant
0

Server
Variant
1

Monitor
Output

Attacker must find one input that compromises both variants

3

IEEE Transactions on

Computers, Jan 1968

4

Nevil Maskelyne

5th English

Astronomer

Royal, 1765-1811

Image: National Maritime Museum, London

5

Image: Michael Daly, Wikimedia Commons

6

Input

Maskelyne’s Redundant Computing

Data Diversity

“Anti-Computer”

“Computer”

“Comparer”

Data for
computing

positions
at noon

Data for
computing

positions at
midnight

7

Babbage’s Review

“I wish to God these

calculations had been

executed by steam.”

Charles Babbage, 1821

8

...back to the 21st century (and beyond)

• Moore’s Law: number of transistors/$
increases exponentially

• Einstein’s Law: speed of light isn’t getting
faster

• Eastwood/Turing Law: “If you want a
guarantee, buy a toaster.”

• Sutton’s Law: “That’s where the money is.”

Vulnerabilities and attackers aren’t going away.

CPU cycles are becoming free, but only in parallel.

9

Using Extra Cores for Security

• Despite lots of effort:

– Automatically parallelizing programs is still
only possible in rare circumstances

– Human programmers are not capable of
thinking asynchronously

• Most server programs do not have fine
grain parallelism and are I/O-bound

• Hence: lots of essentially free cycles for
security

10

Security Through Diversity

• Address-Space Randomization

– [Forest+ 1997, PaX ALSR 2001, Bhatkar+ 2003,

Windows Vista 2008]

• Instruction Set Randomization

– [Kc+ 2003, Barrantes+ 2003]

• Data Diversity

11

Derandomizer

Processor

Example:

Instruction Set Randomization

Randomizer

Secret Key

Original
Executable

Randomized
Program

Malicious
Injected Code

Broken Malicious

Code

12

Limitations of Diversity Techniques

• Weak security assurances

– Probabilistic guarantees

– Uncertain what happens when it works

• Need high-entropy variations

– Address-space may be too small [Shacham+, CCS 04]

• Need to keep secrets

– Attacker may be able to incrementally probe system

[Sovarel+, USENIX Sec 2005]

– Side channels, weak key generation, etc.

13

N-Variant System Framework

• Polygrapher
– Replicates input to all variants

• Variants
– N processes that implement the

same service

– Vary property you hope attack
depends on: memory locations,
instruction set, system call
numbers, calling convention, data
representation, …

Variant

0

Variant

1

Monitor
Poly-

grapher

• Monitor

– Observes variants

– Delays external effects until

all variants agree

– Initiates recovery if variants

diverge

No secrets, high assurances,

no need for entropy

14

N-Version

Programming

[Avizienis & Chen, 1977]

• Multiple teams of

programmers implement

same specification

• Voter compares results

and selects most common

• No guarantees: teams

may make same mistake

• Transformer automatically

produces diverse variants

• Monitor compares results

and detects attack

• Guarantees: variants behave

differently on particular

input classes

N-Variant

Systems

15

Variants Requirements

• Detection Property

Any attack that compromises one variant
causes the other to “crash” (behave in a way
that is noticeably different to the monitor)

• Normal Equivalence Property

Under normal inputs, the variants stay in
equivalent states:

A
0
(S0) ≡ A

1
(S1)

Actual states are
different, but abstract
states are equivalent

16

Opportunity for Variation

All Possible Inputs

Malicious Inputs

Inputs with Well-Defined

Behavior

Can’t change “well-defined” behavior, but can change “undefined” behavior

17

Disjoint Variants

Malicious

Inputs

Variant 0 Variant 1

Inputs with

Well-Defined

Behavior

Behavior

Malicious

Inputs Inputs with

Well-Defined

Behavior

18

Interpreter

Model

of

Execution

Interpreter1

Interpreter2

InterpreterN

...

Physical Resources

Input/Output

Each interpreter

manipulates different

data types, protecting

inner interpreters.

Malicious data finds a

way through

protections in one

interpreter to exploit

functionality in lower

interpreters.

Our goal: replace

interpreters so

malicious data is

interpreted.

19

Example: Address-Space Partitioning

• Variation

– Variant 0: addresses all start with 0

– Variant 1: addresses all start with 1

• Normal Equivalence

– Map addresses to same address space

– Assumes normal behavior does not depend on absolute

addresses

• Detection Property

– Any injected absolute load/store is invalid on one of the

variants

20

Example: Instruction Set Tagging
• Variation: add an extra bit to all opcodes

– Variation 0: tag bit is a 0

– Variation 1: tag bit is a 1

– Run-time: check and remove bit (software dynamic translation)

• Normal Equivalence:

– Remove the tag bits

– Assume well-behaved program does not rely on its own

instructions

• Detection Property

– Any (tagged) opcode is invalid on one variant

– Injected code (identical on both) cannot run on both

21

Data Diversity

[Amman & Knight, 1987]

and [Maskelyne 1767]

Re-expression

functions

transform data

representation

Inverse

transformations

R0

R1

R0
-1

R1
-1

P

P

Input
Output

22

Variations on Interpreters

???...

Instruction

Address

Data

Type

R1(inst) = 1 || inst

R1
-1(1 || inst) = inst

R0(inst) = 0 || inst

R0
-1(0 || inst) = inst

Instruction

Set Tagging

R1(a) = a + 0x800...

R1
-1(a) = a - 0x800...

R0(a) = a

R0
-1(a) = a

Address

Space

Partitioning

Variant 1Variant 0Variation

23

Data Diversity in N-Variant Systems

R0

R1

R0
-1

R1
-1

P

P

Input
Output

Trusted

Data

Variant 0

Variant 1 Monitor

Untrusted Input

ʹ

24

UID Corruption Attacks

uid_t user;
...
user = authenticate();
...
setuid(user);

Attacker corrupts user

Examples in

[Chen+, USENIX Sec 2005]

Goal: thwart attacks by changing data representation

25

UID Data Diversity

root: 0
bin: 1
nobody: 99

root: 0x7FFFFFFF
bin: 0x7FFFFFFE
nobody: 0x7FFFFF9C

R0(u) = u

R0
-1(u) = u

R1(u) = u ⊕ 0x7FFFFFFF

R1
-1(u) = u ⊕ 0x7FFFFFFF

Identity Re-expression Flip Bits Re-expression

Variant 0 Variant 1

26

Data Transformation Requirements

• Normal equivalence:

– ∀x: T, R
i
-1(R

i
(x)) = x

– All trusted data of type T is transformed by R

– All instructions in P that operate on data of

type T are transformed to preserve original

semantics on re-expressed data

• Detection:

– ∀x: T, R
0

-1(x) ≠ R
1

-1(x)) (disjointedness)

27

Ideal Implementation

• Polygrapher

– Identical inputs to variants at same time

• Monitor

– Continually examine variants completely

• Variants

– Fully isolated, behave identically on normal inputs

Infeasible for real systems

28

Framework Implemention

• Modified Linux 2.6.11
kernel

• Run variants as processes

• Create 2 new system calls

– n_variant_fork

– n_variant_execve

• Replication and monitoring
by wrapping system calls

V
0

V
1 V

2

Kernel

Hardware

29

Wrapping System Calls

• All calls: check each variant makes the same call

• I/O system calls (process interacts with external state)

(e.g., open, read, write)

– Make call once, send same result to all variants

• Reflective system calls (e.g, fork, execve, wait)

– Make call once per variant, adjusted accordingly

• Dangerous

– Some calls break isolation (mmap) or escape framework

(execve)

– Current solution: disallow unsafe calls

30
30

sys_write_wrapper(int fd, char __user * buf, int len) {
if (!IS_VARIANT(current)) { perform system call normally }
else {
if (!inSystemCall(current->nv_system)) { // First variant to reach

Save Parameters
Sleep
Return Result Value

} else if (currentSystemCall(current->nv_system) !=SYS_WRITE) {
DIVERGENCE – different system calls
} else if (!Parameters Match) {
DIVERGENCE – different parameters
} else if (!isLastVariant(current->nv_system)) {

Sleep
Return Result Value

} else {
Perform System Call
Save Result
Wake Up All Variants
Return Result Value

}
}

}

31

Implementing Variants

• Address Space Partitioning

– Specify segments’ start addresses and sizes

– OS detects injected address as SEGV

• Instruction Set Tagging

– Use Diablo [De Sutter+ 03] to insert tags into

binary

– Use Strata [Scott+ 02] to check and remove

tags at runtime

32

Implementing UID Variation

• Assumptions:

– We can identify UID data (uid_t, gid_t)

– Only certain operations are performed on it:

• Assignments, Comparisons, Parameter passing

Program shouldn’t depend on actual UID

values, only the users they represent.

33

Code Transformation

• Re-express UID constants in code

• Preserve semantics

– Flip comparisons

• Fine-grained monitoring:

uid_t uid_value(uid_t), bool check_cond(bool)

• External Trusted Data (e.g., /etc/passwd)

if (!getuid()) ⇒ if (getuid() == 0)

⇒ if (getuid() == 0x7FFFFFFF)

R1

34

Re-expressed Files

fopen(“/etc/password”);

root:0:...
bin: 1:...

...
nobody: 99:...

fopen(“/etc/password”);

Variant 0 Variant 1

fopen wrapper

/etc/password-0

root:0x7FFFFFFF:...
bin: 0x7FFFFFFE:...

...
nobody: 0x7FFFFF9C:...

/etc/password-1

Variant-specific

kernel file table to

support both shared

(normal) and re-

expressed files

35

Thwarting UID Corruption

Variant 0

Variant 1

R1(x)

R1
-1(x)

R0
-1(x)R0(x)

=

Poly-
grapher

Injected UID: ∀x: T, R
0

-1(x) ≠ R
1

-1(x)) ⇒ detected

36

Results

5.81

16.32

6.56

37.36

6.65

38.49

0 10 20 30 40

Unsaturated

Saturated

UID Data Variation

Address-Partitioning

Unmodified

Apache 1.3 on

Linux 2.6.11

(1 WebBench

client)

(5 hosts *

6 each

WebBench

clients)

14% increase in latency

(13% decrease in

throughput)

136% increase in latency

(58% decrease in

throughput)

37

Open Problems and Opportunities

• Dealing with non-determinism
– Most sources addressed by wrappers

• e.g., entropy sources

– ...but not multi-threading [Bruschi, Cavallero & Lanzi 07]

• Finding useful higher level variations
– Need specified behavior

– Opportunities with higher-level languages, web
application synthesizers

• Client-side uses (e.g., JavaScript interpreters)

• Giving variants different inputs
– Character encodings

38

N-Variant Framework Summary

• Force attacker to simultaneously compromise all
variants with same input

• Advantages

– Enables low-entropy variations

– High security assurance with no secrets
• Easier to deploy and maintain than secret diversity

• Disadvantages

– Expensive for CPU-bound applications

– Variations limited by need to preserve application
semantics

39

http://www.cs.virginia.edu/nvariant/ Supported by National

Science Foundation

Cyber Trust Program

and MURI

Papers: USENIX Sec 2006, DSN 2008

Collaborators: Ben Cox, Anh Nguyen-Tuong,

Jonathan Rowanhill, John Knight, Jack Davidson 40

41

Related Work

• Design Diversity

– HACQIT [Just+, 2002], [Gao, Reiter & Song

2005]

• Probabilistic Variations

– DieHard [Berger & Zorn, 2006]

• Other projects exploring similar frameworks

– [Bruschi, Cavallaro & Lanzi 2007],

[Salamat, Gal & Franz 2008]

