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The Basic Idea
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Babbage’s Review

“I wish to God these 

calculations had been 

executed by steam.”

Charles Babbage, 1821
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...back to the 21st century (and beyond)

• Moore’s Law: number of transistors/$ 
increases exponentially

• Einstein’s Law: speed of light isn’t getting 
faster

• Eastwood/Turing Law: “If you want a 
guarantee, buy a toaster.”

• Sutton’s Law: “That’s where the money is.”

Vulnerabilities and attackers aren’t going away.

CPU cycles are becoming free, but only in parallel.
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Using Extra Cores for Security

• Despite lots of effort:

– Automatically parallelizing programs is still 
only possible in rare circumstances

– Human programmers are not capable of 
thinking asynchronously

• Most server programs do not have fine 
grain parallelism and are I/O-bound

• Hence: lots of essentially free cycles for 
security
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Security Through Diversity

• Address-Space Randomization 

– [Forest+ 1997, PaX ALSR 2001, Bhatkar+ 2003, 

Windows Vista 2008]

• Instruction Set Randomization

– [Kc+ 2003, Barrantes+ 2003]

• Data Diversity
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Limitations of Diversity Techniques

• Weak security assurances

– Probabilistic guarantees

– Uncertain what happens when it works

• Need high-entropy variations

– Address-space may be too small [Shacham+, CCS 04]

• Need to keep secrets

– Attacker may be able to incrementally probe system 

[Sovarel+, USENIX Sec 2005]

– Side channels, weak key generation, etc.
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N-Variant System Framework

• Polygrapher
– Replicates input to all variants

• Variants
– N processes that implement the 

same service

– Vary property you hope attack 
depends on: memory locations, 
instruction set, system call 
numbers, calling convention, data 
representation, …

Variant 

0

Variant

1

Monitor
Poly-

grapher

• Monitor

– Observes variants

– Delays external effects until 

all variants agree

– Initiates recovery if variants 

diverge

No secrets, high assurances, 

no need for entropy
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N-Version

Programming

[Avizienis & Chen, 1977]

• Multiple teams of 

programmers implement 

same specification

• Voter compares results 

and selects most common

• No guarantees: teams 

may make same mistake

• Transformer automatically 

produces diverse variants

• Monitor compares results 

and detects attack

• Guarantees: variants behave 

differently on particular 

input classes

N-Variant

Systems
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Variants Requirements

• Detection Property

Any attack that compromises one variant 
causes the other to “crash” (behave in a way 
that is noticeably different to the monitor)

• Normal Equivalence Property

Under normal inputs, the variants stay in 
equivalent states:

A
0
(S0) ≡ A

1
(S1)

Actual states are 
different, but abstract 
states are equivalent
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Opportunity for Variation

All Possible Inputs

Malicious Inputs

Inputs with Well-Defined 

Behavior

Can’t change “well-defined” behavior, but can change “undefined” behavior
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Disjoint Variants

Malicious 

Inputs

Variant 0 Variant 1
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Interpreter 

Model

of 

Execution

Interpreter1

Interpreter2

InterpreterN

...

Physical Resources

Input/Output

Each interpreter 

manipulates different 

data types, protecting 

inner interpreters.

Malicious data finds a 

way through 

protections in one 

interpreter to exploit 

functionality in lower 

interpreters.

Our goal: replace 

interpreters so 

malicious data is 

interpreted. 
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Example: Address-Space Partitioning

• Variation

– Variant 0: addresses all start with 0

– Variant 1: addresses all start with 1

• Normal Equivalence

– Map addresses to same address space

– Assumes normal behavior does not depend on absolute 

addresses

• Detection Property

– Any injected absolute load/store is invalid on one of the 

variants
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Example: Instruction Set Tagging
• Variation: add an extra bit to all opcodes

– Variation 0: tag bit is a 0

– Variation 1: tag bit is a 1

– Run-time: check and remove bit (software dynamic translation) 

• Normal Equivalence: 

– Remove the tag bits

– Assume well-behaved program does not rely on its own 

instructions

• Detection Property

– Any (tagged) opcode is invalid on one variant

– Injected code (identical on both) cannot run on both
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Data Diversity

[Amman & Knight, 1987]

and [Maskelyne  1767]

Re-expression 

functions 

transform data 

representation

Inverse 

transformations

R0

R1

R0
-1

R1
-1

P

P

Input
Output

22

Variations on Interpreters

???...

Instruction

Address

Data 

Type

R1(inst) = 1 || inst

R1
-1(1 || inst) = inst

R0(inst) = 0 || inst

R0
-1(0 || inst) = inst

Instruction 

Set Tagging

R1(a) = a + 0x800...

R1
-1(a) = a - 0x800...

R0(a) = a

R0
-1(a) = a

Address 

Space 

Partitioning

Variant 1Variant 0Variation
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Data Diversity in N-Variant Systems
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UID Corruption Attacks

uid_t user;
...
user = authenticate();
...
setuid(user);

Attacker corrupts user

Examples in 

[Chen+, USENIX Sec 2005]

Goal: thwart attacks by changing data representation
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UID Data Diversity

root: 0
bin: 1
nobody: 99

root: 0x7FFFFFFF
bin: 0x7FFFFFFE
nobody: 0x7FFFFF9C

R0(u) = u

R0
-1(u) = u

R1(u)   = u ⊕ 0x7FFFFFFF

R1
-1(u) = u ⊕ 0x7FFFFFFF

Identity Re-expression Flip Bits Re-expression

Variant 0 Variant 1
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Data Transformation Requirements

• Normal equivalence:

– ∀x: T, R
i
-1(R

i
(x)) = x

– All trusted data of type T is transformed by R

– All instructions in P that operate on data of 

type T are transformed to preserve original 

semantics on re-expressed data

• Detection:

– ∀x: T, R
0

-1(x) ≠ R
1

-1(x))   (disjointedness)
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Ideal Implementation

• Polygrapher

– Identical inputs to variants at same time

• Monitor

– Continually examine variants completely

• Variants

– Fully isolated, behave identically on normal inputs

Infeasible for real systems
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Framework Implemention

• Modified Linux 2.6.11 
kernel

• Run variants as processes

• Create 2 new system calls

– n_variant_fork

– n_variant_execve

• Replication and monitoring 
by wrapping system calls

V
0

V
1 V

2

Kernel

Hardware
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Wrapping System Calls

• All calls: check each variant makes the same call

• I/O system calls (process interacts with external state) 

(e.g., open, read, write)

– Make call once, send same result to all variants

• Reflective system calls (e.g, fork, execve, wait)

– Make call once per variant, adjusted accordingly

• Dangerous 

– Some calls break isolation (mmap) or escape framework 

(execve)

– Current solution: disallow unsafe calls
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sys_write_wrapper(int fd, char __user * buf, int len) {  
if (!IS_VARIANT(current)) { perform system call normally }
else {
if (!inSystemCall(current->nv_system)) {  // First variant to reach

Save Parameters
Sleep
Return Result Value

} else if (currentSystemCall(current->nv_system) !=SYS_WRITE) {
DIVERGENCE – different system calls
} else if (!Parameters Match) {
DIVERGENCE – different parameters
} else if (!isLastVariant(current->nv_system)) {

Sleep
Return Result Value

} else {
Perform System Call
Save Result
Wake Up All Variants
Return Result Value

}
}

} 
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Implementing Variants

• Address Space Partitioning

– Specify segments’ start addresses and sizes

– OS detects injected address as SEGV

• Instruction Set Tagging

– Use Diablo [De Sutter+ 03] to insert tags into 

binary 

– Use Strata [Scott+ 02] to check and remove 

tags at runtime
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Implementing UID Variation

• Assumptions:

– We can identify UID data (uid_t, gid_t)

– Only certain operations are performed on it:

• Assignments, Comparisons, Parameter passing

Program shouldn’t depend on actual UID 

values, only the users they represent.
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Code Transformation

• Re-express UID constants in code

• Preserve semantics

– Flip comparisons

• Fine-grained monitoring: 

uid_t uid_value(uid_t), bool check_cond(bool)

• External Trusted Data (e.g., /etc/passwd)

if (!getuid()) ⇒ if (getuid() == 0)

⇒ if (getuid() == 0x7FFFFFFF)

R1
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Re-expressed Files

fopen(“/etc/password”);

root:0:...
bin: 1:...

...
nobody: 99:...

fopen(“/etc/password”);

Variant 0 Variant 1

fopen wrapper

/etc/password-0

root:0x7FFFFFFF:...
bin: 0x7FFFFFFE:...

...
nobody: 0x7FFFFF9C:...

/etc/password-1

Variant-specific 

kernel file table to 

support both shared 

(normal)  and re-

expressed files
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Thwarting UID Corruption

Variant 0

Variant 1

R1(x)

R1
-1(x)

R0
-1(x)R0(x)

=

Poly-
grapher

Injected UID: ∀x: T, R
0

-1(x) ≠ R
1

-1(x)) ⇒ detected

36

Results
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UID Data Variation

Address-Partitioning

Unmodified

Apache 1.3 on 

Linux 2.6.11

(1 WebBench

client)

(5 hosts * 

6 each 

WebBench

clients)

14% increase in latency 

(13% decrease in 

throughput)

136% increase in latency 

(58% decrease in 

throughput)
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Open Problems and Opportunities

• Dealing with non-determinism
– Most sources addressed by wrappers

• e.g., entropy sources

– ...but not multi-threading [Bruschi, Cavallero & Lanzi 07]

• Finding useful higher level variations
– Need specified behavior

– Opportunities with higher-level languages, web 
application synthesizers

• Client-side uses (e.g., JavaScript interpreters)

• Giving variants different inputs
– Character encodings 
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N-Variant Framework Summary

• Force attacker to simultaneously compromise all 
variants with same input

• Advantages

– Enables low-entropy variations

– High security assurance with no secrets
• Easier to deploy and maintain than secret diversity

• Disadvantages

– Expensive for CPU-bound applications

– Variations limited by need to preserve application 
semantics
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Related Work

• Design Diversity

– HACQIT [Just+, 2002], [Gao, Reiter & Song 

2005]

• Probabilistic Variations

– DieHard [Berger & Zorn, 2006]

• Other projects exploring similar frameworks

– [Bruschi, Cavallaro & Lanzi 2007], 

[Salamat, Gal & Franz 2008]


