

Let S(x) be the set of bits set in integer x; for example, S(13) would be $\{0, 2, 3\}$ because 13, or 0b1101, has the 2^0 , 2^2 , and 2^3 bits set.

Write code bitwise expressions that set variables a through through f such that the following expressions are true. The first one is done for you.

 $S(a) = S(x) \cup S(y)$ $a = x \mid y$ $S(b) = S(x) \cap S(y)$ b = $S(c) = S(x) \setminus S(y)$ c = $S(d) = S(x) \cup \{7\}$ d = $S(e) = S(x) \setminus \{7\}$ e = $f = \begin{cases} 1 & \text{if } 8 \in S(x) \\ 0 & \text{otherwise} \end{cases}$ f =

The following circuit implements a 4-bit left-shift, $z = x \ll s$. Dots are used to show where wires join as opposed to crossing over each other without touching.

Complete the following diagram to implement sign-extending right-shift, z = x >> s. Use dots, etc, similarly to the example diagram above.

