Practice 01

problem 1 English to logic
Rewrite each of the following English sentences as an expression over propositions. Include both a mapping from symbols to propositions and the final expression (see the example). If there are ambiguities, explain where they arise, and give two non-equivalent interpretations.

1. (example) If I forget my keys I can't get into the house unless my roommate is home.

K: I remember my keys
H : I can enter my house
R : My roommate is home
$\neg K \wedge \neg R \rightarrow \neg H$
2. I prefer oranges to apples, although apples are less messy to eat
3. If you can prove $P \neq N P$ (or $P=N P$, though I hope you don't), you'll become famous and I'll give you an A in this class
4. Python programmers must be lazy because Python programs are so much shorter than the equivalent Java or C++ programs
problem 2 If Statements
Write an expression for when the following function returns the given return values. Use the variables a and b as your propositions.

```
def f(a,b):
        if a:
            return "left"
        elif b:
            return "right"
        else:
            return "up"
Returns "right" when
```

Returns "up" when
problem 3 Truth Tables
Fill in the following truth tables

A	B	C	$(A \vee C) \leftrightarrow(B \wedge C)$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

A	B	C	$(A \oplus B) \vee(A \oplus C) \vee(B \oplus C)$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

In each of the blanks below, put $1^{\text {st }}$ if the first truth table above is the given idea; $2^{\text {nd }}$ if the second truth table is; leave it blank if neither is.
\qquad at least one of A, B, and C is 1
\qquad at least one of A, B, and C is 0
\qquad A, B, and C are all the same
\qquad A, B, and C are not all the same
\qquad either A and C are both false or B and C are both true, but not both
\qquad either A and C are both false or B and C are both true, or both

