PROBLEM 1 Equivalence rules

Consider the following equivalence rules:

- the associativity and commutativity of \land , \lor , and \oplus
- double negation: $\neg \neg P \equiv P$
- simplification: $P \land \bot \equiv \bot$, $P \land \top \equiv P$, $P \lor \bot \equiv P$, and $P \lor \top \equiv \top$
- distribution: $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$ and $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
- De Morgan: $\neg (A \land B) \equiv (\neg A) \lor (\neg B)$ and $\neg (A \lor B) \equiv (\neg A) \land (\neg B)$
- definitions: $A \to B \equiv (\neg A) \lor B$, $(A \leftrightarrow B) \equiv (A \to B) \land (B \to A)$ and $(A \oplus B) \equiv (A \lor B) \land \neg (A \land B)$

Prove that $P \to (A \lor Q) \equiv (P \land \neg A) \to Q$ by writing out a series of steps, one per line, where the first line is $P \to (A \lor Q)$, the last line is $(P \land \neg A) \to Q$, and each line other than the first is an application of **one** of those equivalences to the line above it.

You do not need to name your steps, though doing so might help us grade more easily

$$\begin{split} P &\rightarrow (A \lor Q) \\ (\neg P) \lor (A \lor Q) \\ (\neg P \lor A) \lor Q \\ \neg \neg (\neg P \lor A) \lor Q \\ \neg (\neg P \lor A) \to Q \\ (\neg \neg P \land \neg A) \to Q \\ (P \land \neg A) \to Q \end{split}$$

Expression	Rule used	Why this step?
$A \oplus B$		
$(A \vee B) \wedge \overline{(A \wedge B)}$	definition of ⊕	the only option
$((A \wedge \overline{(A \wedge B)}) \vee (B \wedge \overline{(A \wedge B)}))$	distribute	one of two options (De Morgan the other)
$((A \wedge (\overline{A} \vee \overline{B})) \vee (B \wedge (\overline{A} \vee \overline{B})))$	De Morgan	the only option
$((A \wedge \overline{A}) \vee (A \wedge \overline{B})) \vee ((B \wedge \overline{A}) \vee (B \wedge \overline{B}))$	distribute	try to get $A \wedge \overline{A}$ for simplification
$(\bot \lor (A \land \overline{B})) \lor ((B \land \overline{A}) \lor \bot)$	simplify	
$(A \wedge \overline{B}) \vee (B \wedge \overline{A})$	simplify	
$(\overline{\overline{A}} \wedge \overline{B}) \vee (\overline{\overline{B}} \wedge \overline{A})$	double negation	prep for De Morgan
$\overline{(\overline{A} \vee B)} \vee \overline{(\overline{B} \vee A)}$	De Morgan	need \lor to get \rightarrow
$\overline{(\overline{A} \vee B) \wedge (\overline{B} \vee A)}$	De Morgan	need \land in middle, not \lor
$\overline{(A \to B) \land (B \to A)}$	definition of \rightarrow	
$\overline{A \leftrightarrow B}$	definition of \leftrightarrow	

 $A \leftrightarrow B$

 $\overline{\overline{A} \leftrightarrow \overline{B}}$ double negation

... all steps from above, but backward under a negation

 $\overline{A \oplus B}$

PROBLEM 2 Prose proof by case analysis

Write a prose proof of $P \oplus Q \equiv \overline{P} \oplus \overline{Q}$ by completing the provided proof-by-cases template <i>Proof.</i> Either \underline{P} is true or it is false.	te
Case 1: \underline{P} is true The expression $P \oplus Q$ in this case	
is $\top \oplus Q$, which is defined to mean $(\top \vee Q) \wedge \overline{(\top \wedge Q)}$. Simplifying, that is equivalent to $\top \wedge \overline{Q}$, or simply \overline{Q} .	
note: this is probably as brief as you should consider being	
The expression $\overline{P} \oplus \overline{Q}$ in this case	
is $\bot \oplus \overline{Q}$, which is defined to mean $(\bot \lor \overline{Q}) \land \overline{(\bot \land \overline{Q})}$. We can simplify that to $(\overline{Q}) \land \overline{(\bot)}$, which is equivalent to $\overline{Q} \land \top$ or simply \overline{Q} .	
note: this is probably as verbose as you should consider being	F
Because the two are equivalent to the same thing, they are equivalent to each other. Case 2: \underline{P} is false The expression $P \oplus Q$ in this case	
is $\bot \oplus Q$, which is defined to mean $(\bot \lor Q) \land \overline{(\bot \land Q)}$. Simplifying, that is equivalent to $Q \land \top$, or simply Q .	
The expression $\overline{P} \oplus \overline{Q}$ in this case	
is $\top \oplus \overline{Q}$, which is defined to mean $(\top \vee \overline{Q}) \wedge \overline{(\top \wedge \overline{Q})}$. Simplifying, that is equivalent to $\top \wedge \overline{\overline{Q}}$, which is equivalent to Q .	
Because the two are equivalent to the same thing, they are equivalent to each other.	
Because $P \oplus Q \equiv \overline{P} \oplus \overline{Q}$ is true in both cases, it is true in general. \Box	