problem 1 Equivalence rules
Consider the following equivalence rules:

- the associativity and commutativity of \wedge, \vee, and \oplus
- double negation: $\neg \neg P \equiv P$
- simplification: $P \wedge \perp \equiv \perp, P \wedge \mathrm{~T} \equiv P, P \vee \perp \equiv P$, and $P \vee \mathrm{~T} \equiv \mathrm{~T}$
- distribution: $A \wedge(B \vee C) \equiv(A \wedge B) \vee(A \wedge C)$ and $A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$
- De Morgan: $\neg(A \wedge B) \equiv(\neg A) \vee(\neg B)$ and $\neg(A \vee B) \equiv(\neg A) \wedge(\neg B)$
- definitions: $A \rightarrow B \equiv(\neg A) \vee B,(A \leftrightarrow B) \equiv(A \rightarrow B) \wedge(B \rightarrow A)$ and $(A \oplus B) \equiv(A \vee B) \wedge \neg(A \wedge B)$

Prove that $P \rightarrow(A \vee Q) \equiv(P \wedge \neg A) \rightarrow Q$ by writing out a series of steps, one per line, where the first line is $P \rightarrow(A \vee Q)$, the last line is $(P \wedge \neg A) \rightarrow Q$, and each line other than the first is an application of one of those equivalences to the line above it.

You do not need to name your steps, though doing so might help us grade more easily
$P \rightarrow(A \vee Q)$
$(\neg P) \vee(A \vee Q)$
$(\neg P \vee A) \vee Q$
$\neg \neg(\neg P \vee A) \vee Q$
$\neg(\neg P \vee A) \rightarrow Q$
$(\neg \neg P \wedge \neg A) \rightarrow Q$
$(P \wedge \neg A) \rightarrow Q$

Want more practice? Try doing the same for $A \oplus B \equiv \overline{A \leftrightarrow B}$ and $A \leftrightarrow B \equiv \overline{A \oplus B}$ and, if you feel ambitious, $A \oplus B \oplus C \equiv(A \wedge \bar{B} \wedge \bar{C}) \vee(\bar{A} \wedge B \wedge \bar{C}) \vee(\bar{A} \wedge \bar{B} \wedge C) \vee(A \wedge B \wedge C)$

Expression	Rule used	Why this step?
$A \oplus B$		
$(A \vee B) \wedge \overline{(A \wedge B)}$	definition of \oplus	the only option
$((A \wedge \overline{(A \wedge B)}) \vee(B \wedge \overline{(A \wedge B)}))$	distribute	one of two options (De Morgan the other)
$((A \wedge(\bar{A} \vee \bar{B})) \vee(B \wedge(\bar{A} \vee \bar{B})))$	De Morgan	the only option
$((A \wedge \bar{A}) \vee(A \wedge \bar{B})) \vee((B \wedge \bar{A}) \vee(B \wedge \bar{B}))$	distribute	try to get $A \wedge \bar{A}$ for simplification
$(\perp \vee(A \wedge \bar{B})) \vee((B \wedge \bar{A}) \vee \perp)$	simplify	
$(A \wedge \bar{B}) \vee(B \wedge \bar{A})$	simplify	
$(\overline{\bar{A}} \wedge \bar{B}) \vee(\overline{\bar{B}} \wedge \bar{A})$	double negation	prep for De Morgan
$\overline{(\bar{A} \vee B) \vee \overline{(\bar{B} \vee A)}}$	De Morgan	need \vee to get \rightarrow
$\overline{(\bar{A} \vee B) \wedge(\bar{B} \vee A)}$	De Morgan	need \wedge in middle, not \vee
$\overline{(A \rightarrow B) \wedge(B \rightarrow A)}$	definition of \rightarrow	
$\overline{A \leftrightarrow B}$	definition of \leftrightarrow	

$A \leftrightarrow B$
$\overline{\overline{A \leftrightarrow B}}$ double negation
... all steps from above, but backward under a negation
$\overline{A \oplus B}$
problem 2 Prose proof by case analysis
Write a prose proof of $P \oplus Q \equiv \bar{P} \oplus \bar{Q}$ by completing the provided proof-by-cases template. Proof. Either \underline{P} is true or it is false.

Case 1: P \qquad is true The expression $P \oplus Q$ in this case
is $T \oplus Q$, which is defined to mean $(T \vee Q) \wedge \overline{(T \wedge Q)}$.
Simplifying, that is equivalent to $T \wedge \bar{Q}$, or simply \bar{Q}.
note: this is probably as brief as you should consider being

The expression $\bar{P} \oplus \bar{Q}$ in this case
is $\perp \oplus \bar{Q}$, which is defined to mean $(\perp \vee \bar{Q}) \wedge \overline{(\perp \wedge \bar{Q})}$.
We can simplify that to $(\bar{Q}) \wedge \overline{(\perp)}$,
which is equivalent to $\bar{Q} \wedge T$ or simply \bar{Q}.
note: this is probably as verbose as you should consider being

Because the two are equivalent to the same thing, they are equivalent to each other.
Case 2: P \qquad is false The expression $P \oplus Q$ in this case
is $\perp \oplus Q$, which is defined to mean $(\perp \vee Q) \wedge \overline{(\perp \wedge Q)}$. Simplifying, that is equivalent to $Q \wedge T$, or simply Q.

The expression $\bar{P} \oplus \bar{Q}$ in this case
is $T \oplus \bar{Q}$, which is defined to mean $(T \vee \bar{Q}) \wedge \overline{(T \wedge \bar{Q})}$.
Simplifying, that is equivalent to $T \wedge \overline{\bar{Q}}$, which is equivalent to Q.

Because the two are equivalent to the same thing, they are equivalent to each other.
Because $P \oplus Q \equiv \bar{P} \oplus \bar{Q}$ is true in both cases, it is true in general.

