Practice 06

This lab refers to the following two definitions. The first we've seen before:
Definition 1 (Kleene Star) Given any set A, the set A^{*} contains the empty sequence () and every sequence than can be created by appending an element of A to a different element of A^{*}.

The second is often left undefined, relying on an intuitive sense of what it means to be finite. However, having a few rules might help:

Definition 2 (Finite) Any integer you can write (and finish writing) in base-10 is finite. The sum or product of two finite numbers is finite. Any number whose absolute value is smaller than some finite number is finite.
problem 1 Proof by Induction
Complete the following proof by induction of the theorem "every string in $\{a\}^{*}$ has finite length."
Proof. We use induction. The induction hypothesis is that a string has finite length.

Base case: λ
\qquad
\qquad has finite length, because its length is 0 , and 0 is finite.

Inductive step: Assume that a string s has finite length. Then string of "a"s one longer than s must have finite length because
it contains one more a than did s. Adding 1 (a finite number) to the length keeps the length finite.
(Note we could also have defined t as "the only element of $\{\mathrm{a}\}^{|s|}$ " or as " $(s, \mathrm{a})^{\prime}$ ".)

It follows by induction that every strings in $\{a\}^{*}$ has finite length.

Want more practice? Try proving that every element of $\{\mathrm{a}, \mathrm{b}\}^{*}$ is finite; that for every $x \in \mathbb{N}$ the sum of the elements in $\{y \mid y \in \mathbb{N} \wedge y<x\}$ is finite; that for every $x \in \mathbb{N}$ the sum of the elements in $\{y \mid y \in \mathbb{N} \wedge y<x\}$ is no greater than x^{2}; and all the practice problems in §5.1-5.3 (i.e., 5.1 through 5.29).
problem 2 Proof by Contradiction
Complete the following proof by contradiction of the theorem "there is no longest string in $\{a\}^{*}$. ."

Proof. Assume there was a longest string, $s \in\{\mathrm{a}\}^{*}$, where $\nexists q \in\{\mathrm{a}\}^{*} . q$ is longer than s. Consider the sequence t defined as
a sequence of "a"s one "a" longer than s

By construction, t is longer than s.
We know that $t \in\{\mathrm{a}\}^{*}$ because
it is constructed by appending an element of $\{\mathrm{a}\}$ to s and s is a member of $\{\mathrm{a}\}^{*}$.

But that contradicts $\exists q \in\{\mathrm{a}\}^{*} . q$ is longer than s.
Because
assuming there was a longest string led to a contradiction,
there is no longest string in $\{a\}^{*}$.

Want more practice? Try proving that there is no longest string of $\{a, b\}^{*}$; that 2 is the only even prime number; that a subset cannot be larger than its superset; and most practice problems in $\S 2$ (i.e., 2.1 through 2.13) and problem 4.25 and 4.26 .

