CS 2102 - DMT1 - Fall 2019 — Luther Tychonievich Practice exercise in class friday october 25, 2019

Practice 07

You may answer any question with factorial, choose, and unresolved arithmetic notation, but may not use ellipses. For example, the following are all OK: $\boxed{120}$, $\boxed{5!}$, $\boxed{\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(3 \cdot 2 \cdot 1)}}$, $\boxed{\binom{5}{3}}$; however, the following is *not* OK: $\boxed{10 \cdot 9 \cdot 8 \cdots 2 \cdot 1}$.

PROBLEM 1 Stand-alone problems

- How many 8-element subsets of a 21-element set are there?
- 2. 2^{5} How many strictly-increasing sequences of the numbers $\{1,2,3,4,5\}$ are
- 3. $5 \times 10^9 5 \approx 5 \times 10^9$ My passphrase is a six-word extract taken randomly from the 5-billionword string created by concatenating all Wikipedia articles. If no six-word string is repeated twice in that corpus, how many passwords can be created in this method?
- 4. $\frac{26!}{18!} \approx 6.3 \times 10^{10}$ My passphrase is an eight-character string made up of a random collection of lower-case letters (from the 26 letters a through z), without repeating any letter. How many passwords can be created in this method?
- 5. $\frac{26^8 \approx 2 \times 10^{11}}{\text{lection of lower-case letters (from the 26 letters a through z), allowing letter repetitions. How many passwords can be created in this method?$
- 6. $\frac{4 \cdot 6 3 = 21}{\text{numbers could I roll?}}$ I roll four fair six-sided dice and total the result. How many possible
- 7. $\frac{\frac{1}{6^4} = \frac{1}{1296}}{\text{total will be 4?}}$ I roll four fair six-sided dice and total the result. What is the chance the
- 8. $\frac{6^2 + 2(5^2 + 4^2 + 3^2 + 2^2 + 1^2)}{6^4}$ total will be 14? I roll four fair six-sided dice and total the result. What is the chance the

PROBLEM 2 Problems about Bogosort

Bogosort sorts a list be shuffling it, checking to see if it is in order, and then shuffling again if not. We have two versions: version \mathbf{R} shuffles randomly each time; version \mathbf{U} other shuffles in a way that guarantees each shuffling will be unique (i.e., it never checks the same permuiation twice).

- 9. $\frac{1}{20!}$ If given a list of 20 distinct numbers, what is the chance **R** will get the sorted list after just one shuffle?
- If given a list of 20 numbers consisting of ten 1s and ten 2s, what is the chance **R** will get the sorted list after just one shuffle?
- If given a list of 20 distinct numbers, 0 through 18 with 0 repeated in the list twice; what is the chance \mathbf{U} will get the sorted list after just one shuffle?
- 12. $\frac{\frac{1}{20!} + \frac{20! 1}{20!^2} + \frac{(20! 1)^2}{20!^3}}{\text{a list of 20 distinct numbers?}}$ How likely **R** to get the right answer after no more than three tries given
- 13. $\frac{3}{20!}$ How likely is **U** to get the right answer after no more than three tries given a list of 20 distinct numbers?
- 14. $\underline{n!}$ If I know nothing about the contents of the list, but know it contains n values, how many times could $\mathbf U$ shuffle the list in the worst case before it gets the list sorted?

15. all values distinct

(continuing from the previous problem) Describe that worst-case list.