Practice 07

You may answer any question with factorial, choose, and unresolved arithmetic notation, but may not use ellipses. For example, the following are all $\left.\mathrm{OK}: \boxed{120}, \boxed{5!}, \begin{array}{|c}\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(3 \cdot 2 \cdot 1)} \\ \hline\end{array}, \begin{array}{l}5 \\ 3\end{array}\right)$; however, the following is not $\mathrm{OK}: 10 \cdot 9 \cdot 8 \cdots 2 \cdot 1$.
problem 1 Stand-alone problems

1. \qquad How many 8-element subsets of a 21-element set are there?
2. \qquad How many strictly-increasing sequences of the numbers $\{1,2,3,4,5\}$ are there?
\qquad My passphrase is a six-word extract taken randomly from the 5-billionword string created by concatenating all Wikipedia articles. If no six-word string is repeated twice in that corpus, how many passwords can be created in this method?
\qquad My passphrase is an eight-character string made up of a random collection of lower-case letters (from the 26 letters a through z), without repeating any letter. How many passwords can be created in this method?
\qquad My passphrase is an eight-character string made up of a random collection of lower-case letters (from the 26 letters a through z), allowing letter repetitions. How many passwords can be created in this method?
3. \qquad I roll four fair six-sided dice and total the result. How many possible numbers could I roll?
\qquad I roll four fair six-sided dice and total the result. What is the chance the total will be 4?
\qquad I roll four fair six-sided dice and total the result. What is the chance the total will be $14 ?$
problem 2 Problems about Bogosort
Bogosort sorts a list be shuffling it, checking to see if it is in order, and then shuffling again if not. We have two versions: version \mathbf{R} shuffles randomly each time; version \mathbf{U} other shuffles in a way that guarantees each shuffling will be unique (i.e., it never checks the same permuiation twice).
4. \qquad If given a list of 20 distinct numbers, what is the chance \mathbf{R} will get the sorted list after just one shuffle?
5. \qquad If given a list of 20 numbers consisting of ten 1 s and ten 2 s, what is the chance \mathbf{R} will get the sorted list after just one shuffle?
6. \qquad If given a list of 20 distinct numbers, 0 through 18 with 0 repeated in the list twice; what is the chance \mathbf{U} will get the sorted list after just one shuffle?
7. \qquad How likely \mathbf{R} to get the right answer after no more than three tries given a list of 20 distinct numbers?
8. \qquad How likely is \mathbf{U} to get the right answer after no more than three tries given a list of 20 distinct numbers?
9. \qquad If I know nothing about the contents of the list, but know it contains n values, how many times could \mathbf{U} shuffle the list in the worst case before it gets the list sorted?
(continuing from the previous problem) Describe that worst-case list.
