CS 2102 - DMT1 - Fall 2019 - Luther Tychonievich
Practice exercise in class friday october 31, 2019

Practice 08

Theorem $1 \forall n \in \mathbb{N} . \sum_{i=0}^{n} i=\frac{(n)(n+1)}{2}$
problem 1 Proof by Induction
Prove the above theorem using induction.
Proof.
We proceed by induction.
Base Case When $n=0$ we have $\sum_{i=0}^{0} i=0$ and $\frac{(0)(1)}{2}=0$, so the theorem holds for $n=0$.

Inductive step Assume the theorem holds for some $n \in \mathbb{N}$: that is, $\sum_{i=0}^{n} i=\frac{(n)(n+1)}{2}$. Adding $n+1$ to both sides, we have $n+1+\sum_{i=0}^{n} i=n+1+\frac{(n)(n+1)}{2}$; the left-had side is equivalent to $\sum_{i=0}^{n+1} i$ by the definition of summation; the right-hand side can be rearranged using algebra to get $\frac{2(n+1)+(n)(n+1)}{2}=$ $\frac{(2+n)(n+1)}{2}=\frac{(n+1)((n+1)+1)}{2}$; this means that $\sum_{i=0}^{n+1} i=\frac{(n+1)((n+1)+1)}{2}$, or in other words that the theorem holds for $n+1$.

By the principle of induction, the theorem holds for all $n \in \mathbb{N}$.
problem 2 Proof by Contradiction
Prove the above theorem using contradiction and the well-ordering principle.
Proof.
We proceed by contradiction, with case analysis.
Assume that the theorem is false; that is, $\exists n \in \mathbb{N} . \sum_{i=0}^{n} i \neq \frac{(n)(n+1)}{2}$. By the well-ordering principle there must be a smallest such n; call that smallest n where the theorem is false n_{0}.
Because $n_{0} \in \mathbb{N}$, either $n_{0}=0$ or $n_{0}>0$. We consider each case separately.
Case $n_{0}=0$ This means that $\sum_{i=0}^{0} i \neq \frac{(n)(n+1)}{2}$. But both sides are equal to 0 , so they must be equal to each other, which contradicts our assumption.

Case $n_{0}>0$ This means that $\sum_{i=0}^{n_{0}} i \neq \frac{\left(n_{0}\right)\left(n_{0}+1\right)}{2}$. Subtracting n_{0} from both sides, we get $\sum_{i=0}^{n_{0}-1} i \neq$ $\frac{\left(n_{0}\right)\left(n_{0}+1\right)}{2}-n_{0}$ the right-hand side of which simplifies as $\frac{\left(n_{0}\right)\left(n_{0}+1\right)-2 n_{0}}{2}=\frac{\left(n_{0}\right)\left(n_{0}-1\right)}{2}$. But that means the theorem is also false for $n_{0}-1$, which contradicts our assumption that n_{0} was the smallest such n.

Because both cases led to a contradiction, the assumption always leads to a contradiction, which means the assumption must be false. Hence, the theorem must be true for all $n \in \mathbb{N}$.

You might consider grading your own work on the following rubric:

Inductive Proof

Identifies induction as proof structureLabels base case and inductive stepBase case is smallest allowable nBase case is shown to hold via algebraInductive case assumes theorem holds for n and considers $n+1$Inductive case reduces $n+1$ to n via algebraProof ends by stating some form of "by induction, holds for all n "
Proof by Contradiction

Identifies proof by contradiction as proof structureAssumes the theorem is falseEither assumes it is false for some n, or recognizes that $\neg \forall \equiv \exists\urcorner$Uses well-ordering principle (considers smallest such n)- Shows that n can't be the smallest such n becauseShowing that true for n implies true for $n-1$Either showing that there is always an $n-1$, or that the n s that do not have an $n-1$ also meet the theorem

State explicitly that assuming not-theorem led to contradiction (noting it did so in all cases if case analysis used)Proof ends with some form of "by contradiction, theorem true"

You might also try doing the same two proof types with other summation formulae, such as

$$
\begin{aligned}
\sum_{i=0}^{n} i^{2} & =\frac{(n+1)(2 n+1)(n)}{6} \\
\sum_{i=1}^{n+1} i^{2} & =\frac{(n+2)(2 n+3)(n+1)}{6} \\
\sum_{i=2}^{n+2} i^{2} & =\frac{(n+3)(2 n+5)(n+2)}{6} \\
6 \sum_{i=0}^{n} i^{3}-i & =\binom{n+2}{4} \\
\sum_{x=0}^{n} \frac{x^{2}-1}{x+1} & =\frac{(n+1)(n-1)}{2} \\
\sum_{x=0}^{n} x^{3}-x^{2} & =\frac{(n+1)(3 n+2)(n)(n-1)}{12} \\
\sum_{i=0}^{n} 3 i^{2}+2 i & =\frac{(2 n+3)(n+1)(n)}{2} \\
\sum_{i=n}^{\infty} \frac{1}{2^{i}} & =\frac{2}{2^{n}}
\end{aligned}
$$

Note: at least one of the above formulae is false. In the process of proving it you should find the normal methods not working, revealing the non-truth.

