CS 2102 - DMT1 - Fall 2019 - Luther Tychonievich
Practice exercise in class friday october 31, 2019
Practice 08

Theorem $1 \forall n \in \mathbb{N} . \sum_{i=0}^{n} i=\frac{(n)(n+1)}{2}$
problem 1 Proof by Induction
Prove the above theorem using induction.
Proof.
problem 2 Proof by Contradiction
Prove the above theorem using contradiction and the well-ordering principle.
Proof.

You might consider grading your own work on the following rubric:

Inductive Proof

Identifies induction as proof structureLabels base case and inductive stepBase case is smallest allowable nBase case is shown to hold via algebraInductive case assumes theorem holds for n and considers $n+1$Inductive case reduces $n+1$ to n via algebraProof ends by stating some form of "by induction, holds for all n "
Proof by Contradiction

Identifies proof by contradiction as proof structureAssumes the theorem is falseEither assumes it is false for some n, or recognizes that $\neg \forall \equiv \exists\urcorner$Uses well-ordering principle (considers smallest such n)- Shows that n can't be the smallest such n becauseShowing that true for n implies true for $n-1$Either showing that there is always an $n-1$, or that the n s that do not have an $n-1$ also meet the theorem

State explicitly that assuming not-theorem led to contradiction (noting it did so in all cases if case analysis used)Proof ends with some form of "by contradiction, theorem true"

You might also try doing the same two proof types with other summation formulae, such as

$$
\begin{aligned}
\sum_{i=0}^{n} i^{2} & =\frac{(n+1)(2 n+1)(n)}{6} \\
\sum_{i=1}^{n+1} i^{2} & =\frac{(n+2)(2 n+3)(n+1)}{6} \\
\sum_{i=2}^{n+2} i^{2} & =\frac{(n+3)(2 n+5)(n+2)}{6} \\
6 \sum_{i=0}^{n} i^{3}-i & =\binom{n+2}{4} \\
\sum_{x=0}^{n} \frac{x^{2}-1}{x+1} & =\frac{(n+1)(n-1)}{2} \\
\sum_{x=0}^{n} x^{3}-x^{2} & =\frac{(n+1)(3 n+2)(n)(n-1)}{12} \\
\sum_{i=0}^{n} 3 i^{2}+2 i & =\frac{(2 n+3)(n+1)(n)}{2} \\
\sum_{i=n}^{\infty} \frac{1}{2^{i}} & =\frac{2}{2^{n}}
\end{aligned}
$$

Note: at least one of the above formulae is false. In the process of proving it you should find the normal methods not working, revealing the non-truth.

