CS 2102 - DMT1 - Fall 2019 - Luther Tychonievich
Practice exercise in class friday november 8, 2019
Practice 09

Theorem $1 \forall n \in \mathbb{N} . \sum_{x=n}^{2 n} x=\frac{3(n+1) n}{2}$
problem 1 Proof by Induction
Prove the above theorem using induction.
Proof.
We proceed by induction.
Base Case When $n=0$ we have $\sum_{x=0}^{0} 0=0$ and $\frac{3(0) 9}{2}=0$, so the theorem holds for $n=0$.
Inductive step Assume the theorem holds for some $n \in \mathbb{N}$: that is, $\sum_{x=n}^{2 n} x=\frac{3(n+1) n}{2}$. Consider the sum evaluated at $n+1$:

$$
\begin{aligned}
\sum_{x=n+1}^{2(n+1)} x & =-n+2 n+1+2 n+2+\sum_{x=n}^{2 n} x \\
& =3 n+3+\sum_{x=n}^{2 n} x \\
& =3 n+3+\frac{3(n+1) n}{2} \\
& =3 n+3+\frac{3 n^{2}+3 n}{2} \\
& =\frac{6 n+6+3 n^{2}+3 n}{2} \\
& =\frac{3\left(n^{2}+3 n+2\right)}{2} \\
& =\frac{3(n+2)(n+1)}{2} \\
& =\frac{3((n+1)+1)(n+1)}{2}
\end{aligned}
$$

which means the theorem holds at $n+1$ as well.

By the principle of induction, the theorem holds for all $n \in \mathbb{N}$.

problem 2 Proof by Contradiction

Prove the above theorem using contradiction and the well-ordering principle.
Proof.
We proceed by contradiction.
Assume that the theorem is false; that is, $\exists n \in \mathbb{N} . \sum_{x=n}^{2 n} x \neq \frac{3(n+1) n}{2}$. By the well-ordering principle there must be a smallest such n; call that smallest n where the theorem is false n_{0}.

Clearly $n_{0}>0$ because $\sum_{x=0}^{0} x=0=\frac{3(0+1) 0}{2}$. Thus there must be a natural number $m=n_{0}-1$; since $m<n_{0}$ and n_{0} is the smallest value for which the theorem is false, the theorem must be true for m. This means that

$$
\begin{aligned}
\sum_{x=n_{0}-1}^{2\left(n_{0}-1\right)} x & =\frac{3\left(n_{0}\right)\left(n_{0}-1\right)}{2} \\
\left(n_{0}-1\right)-\left(2 n_{0}-1\right)-2 n_{0}+\sum_{x=n_{0}}^{2\left(n_{0}\right)} x & =\frac{3\left(n_{0}^{2}-n_{0}\right)}{2} \\
-3 n_{0}+\sum_{x=n_{0}}^{2\left(n_{0}\right)} x & =\frac{3\left(n_{0}^{2}+n_{0}-2 n_{0}\right)}{2} \\
-3 n_{0}+\sum_{x=n_{0}}^{2\left(n_{0}\right)} x & =\frac{3\left(n_{0}+1\right) n_{0}-6 n_{0}}{2} \\
-3 n_{0}+\sum_{x=n_{0}}^{2\left(n_{0}\right)} x & =-3 n_{0}+\frac{3\left(n_{0}+1\right) n_{0}}{2} \\
\sum_{x=n_{0}}^{2\left(n_{0}\right)} x & =\frac{3\left(n_{0}+1\right) n_{0}}{2}
\end{aligned}
$$

which contradicts $\sum_{x=n_{0}}^{2 n_{0}} x \neq \frac{3\left(n_{0}+1\right) n_{0}}{2}$.
Because the assumption that the theorem was false led to a contradiction, the theorem must be true.

You might consider grading your own work on the following rubric:

Inductive Proof

Identifies induction as proof structureLabels base case and inductive stepBase case is smallest allowable nBase case is shown to hold via algebraInductive case assumes theorem holds for n and considers $n+1$Inductive case reduces $n+1$ to n via algebraProof ends by stating some form of "by induction, holds for all n "
Proof by Contradiction

Identifies proof by contradiction as proof structureAssumes the theorem is falseEither assumes it is false for some n, or recognizes that $\neg \forall \equiv \exists \neg$Uses well-ordering principle (considers smallest such n)- Shows that n can't be the smallest such n becausetrue for n implies true for $n-1$, andeither there is always an $n-1$, or by case analysis that the n s that do not have an $n-1$ also meet the theorem

State explicitly that assuming not-theorem led to contradiction (noting it did so in all cases if case analysis used)Proof ends with some form of "by contradiction, theorem true"

You might also try doing the same two proof types with other summation formulae, such as

$$
\begin{aligned}
\sum_{i=0}^{n} i^{2} & =\frac{(n+1)(2 n+1)(n)}{6} \\
6 \sum_{i=0}^{n} i^{3}-i & =\binom{n+2}{4} \\
\sum_{x=0}^{n} x^{3}-x^{2} & =\frac{(n+1)(3 n+2)(n)(n-1)}{12} \\
\sum_{i=0}^{n} 3 i^{2}+2 i & =\frac{(2 n+3)(n+1)(n)}{2} \\
\sum_{i=n}^{\infty} \frac{1}{2^{i}} & =\frac{2}{2^{n}} \\
\sum_{x=n}^{n^{2}} x & =\frac{n+n^{4}}{2} \\
\sum_{x=0}^{2 n}(-1)^{x} x & =n \\
\sum_{i=1}^{n} \frac{1}{2^{i}} & =\frac{2^{n}-1}{2^{n}} \\
\sum_{k=-n}^{0} k & =\frac{(n+1) n}{-2} \\
\sum_{i=1}^{n} \frac{1}{3^{i}} & =\frac{3^{n}-1}{3^{n} 2} \\
\forall k \neq 1 .\left(\sum_{i=1}^{n} \frac{1}{k^{i}}\right. & \left.=\frac{k^{n}-1}{k^{n}(k-1)}\right)
\end{aligned}
$$

Please note: we expect you to be able to handle all of the following

- alternating series (i.e., with $(-1)^{i}$ terms)
- arithmetic in both top and bottom of the summation bounds limits (e.g., $\sum_{2 n}^{3 n-4}$)
- infinite sums (at least those based on geometric series) (i.e., \sum^{∞})
- reverse sums (e.g., $\sum_{i=-n}^{0}$)
- sums with free variables (e.g., the $\forall k$ in the last example above)

