Name: _____

CS 2102 - DMT1 - Fall 2019 — Luther Tychonievich Administered in class friday september 6, 2019

Quiz 01

PROBLEM 1 English to logic

Rewrite each of the following English sentences as an expression over propositions. Include both a mapping from symbols to propositions and the final expression. If there are ambiguities, explain where they arise, and give two non-equivalent interpretations.

1. Excessive bail shall not be required, nor excessive fines imposed, nor cruel and unusual punishments inflicted

B: excessive bail required F: excessive fines imposed		
C: cruel punishments inflicted	— or —	P: cruel and unusual punishments inflected
$\neg B \land \neg F \land \neg (C \land U)$	— or —	$\neg B \land \neg F \land \neg P$

- (incorrect to say $\neg B \land \neg F \land \neg C \land \neg U$, but give full points this time)
- 2. Jim Ryan will have to give up being the president of UVA if Teresa Sullivan returns to UVA

```
S: Sullivan returns to UVA
R: Ryan gives up presidency
S \rightarrow R
```

(OK to use "Ryan keeps presidency" and $\neg R$ instead)

3. Because we know that no general-purpose sorting algorithm can be faster than $O(n \log n)$, if you hear about any faster algorithm you can know it must be "cheating" somehow

K: We know no general-purpose sorting algorithm can be faster than $O(n \log n)$ H: you hear of a faster algorithm C: "faster" algorithm is cheating $K \rightarrow (H \rightarrow C)$

(half credit if only have one of the two implications)

PROBLEM 2 If Statements

Write an expression for when the following function returns the given return values. Use the variables a, b, and c as your propositions.

```
public static String f(boolean a, boolean b, boolean c){
def f(a,b,c):
                                         if(a || b)
    if a or b:
                                              return "one";
        return "one"
                                         else if(c != a)
    elif c != a:
                                              return "two";
        return "two"
                                         else
    else:
                                              return "three";
        return "three"
                                     }
Returns "one" when a \lor b
```

Returns "three" when $\neg(a \lor b) \land \neg(c \oplus a)$

equivalently, $\overline{a} \wedge \overline{b} \wedge \overline{c}$

(half credit if answered for "two" instead: $\neg(a \lor b) \land (c \oplus a)$)

PROBLEM 3 Truth Tables

Fill in the following truth table (the dashed lines are just to help you line things up)

Α	В	С	(<i>A</i>	\oplus	<i>C</i>)	\leftrightarrow	(<i>B</i>	\leftrightarrow	C)
0	0	0		0		0		1	
0	0	1		1		0	 	0	
						L	L		
0	1	0		0		1	' 	0	
0	1	1		1		1		1	
					+				
1	0	0		1		1		1	
1	0	1		0		1		0	
						<u> </u>	<u> </u>		
1	1	0		1		0	 	0	
1	1	1		0		0		1	
						1	1		