Name:	_ CompID:	
	- 1 -	

CS 2102 - DMT1 - Fall 2019 — Luther Tychonievich Administered in class friday september 13, 2019

Quiz 02

PROBLEM 1 Equivalence rules

Consider the following equivalence rules:

- the associativity and commutativity of $\land, \lor,$ and \oplus
- double negation: $\neg \neg P \equiv P$
- simplification: $P \land \bot \equiv \bot$, $P \land \top \equiv P$, $P \lor \bot \equiv P$, and $P \lor \top \equiv \top$
- distribution: $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$ and $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
- De Morgan: $\neg (A \land B) \equiv (\neg A) \lor (\neg B)$ and $\neg (A \lor B) \equiv (\neg A) \land (\neg B)$
- definitions: $A \to B \equiv (\neg A) \lor B$, $(A \leftrightarrow B) \equiv (A \to B) \land (B \to A)$ and $(A \oplus B) \equiv (A \lor B) \land \neg (A \land B)$

Prove that $(P \land \neg Q) \equiv \neg (P \to Q)$ by writing out a series of steps, one per line, where the first line is $(P \land \neg Q)$, the last line is $\neg (P \to Q)$, and each line other than the first is an application of **one** of those equivalences to the line above it.

You do not need to name your steps, though doing so might help us grade more easily

$$(P \land \neg Q)$$

$$(\neg \neg P \land \neg Q)$$

$$\neg (\neg P \lor Q)$$

$$\neg (P \to Q)$$

PROBLEM 2 Prose proof by case analysis

Write a prose proof of $(P \land Q) \rightarrow M \equiv P \rightarrow (Q \rightarrow M)$ by completing the provided template. *Proof.* Either \underline{P} is true or it is false.

Case 1: \underline{P} is true The expression $(P \land Q) \rightarrow M$ in this case

can be simplified to $Q \to M$ by the equivalence of $T \land Q$ and Q.

The expression $P \rightarrow (Q \rightarrow M)$ in this case

can be simplified to $Q \to M$ by the equivalence of $T \to Q$ and Q.

Because the two are equivalent to the same thing, they are equivalent to each other.

Case 2: \underline{P} is false The expression $(P \land Q) \rightarrow M$ in this case

can be simplified to $\bot \to M$ by the equivalence of $\bot \land Q$ and \bot , which in turn is just \top regardless of the value of M.

The expression $P \to (Q \to M)$ in this case

is $\bot \to (Q \to M)$, which is \top regardless of the values of Q and M.

Because the two are equivalent to the same thing, they are equivalent to each other.

Since $(P \land Q) \rightarrow M \equiv P \rightarrow (Q \rightarrow M)$ is true in both cases, it is true in general. \Box