Name: $\qquad$ CompID: $\qquad$
CS 2102 - DMT1 - Fall 2019 - Luther Tychonievich Administered in class friday september 13, 2019

## Quiz 02

## problem 1 Equivalence rules

Consider the following equivalence rules:

- the associativity and commutativity of $\wedge, \vee$, and $\oplus$
- double negation: $\neg \neg P \equiv P$
- simplification: $P \wedge \perp \equiv \perp, P \wedge \mathrm{~T} \equiv P, P \vee \perp \equiv P$, and $P \vee \mathrm{~T} \equiv \mathrm{~T}$
- distribution: $A \wedge(B \vee C) \equiv(A \wedge B) \vee(A \wedge C)$ and $A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$
- De Morgan: $\neg(A \wedge B) \equiv(\neg A) \vee(\neg B)$ and $\neg(A \vee B) \equiv(\neg A) \wedge(\neg B)$
- definitions: $A \rightarrow B \equiv(\neg A) \vee B,(A \leftrightarrow B) \equiv(A \rightarrow B) \wedge(B \rightarrow A)$ and $(A \oplus B) \equiv(A \vee B) \wedge \neg(A \wedge B)$

Prove that $(P \wedge \neg Q) \equiv \neg(P \rightarrow Q)$ by writing out a series of steps, one per line, where the first line is $(P \wedge \neg Q)$, the last line is $\neg(P \rightarrow Q)$, and each line other than the first is an application of one of those equivalences to the line above it.

You do not need to name your steps, though doing so might help us grade more easily
$(P \wedge \neg Q)$
$(\neg \neg P \wedge \neg Q)$
$\neg(\neg P \vee Q)$
$\neg(P \rightarrow Q)$
problem 2 Prose proof by case analysis
Write a prose proof of $(P \wedge Q) \rightarrow M \equiv P \rightarrow(Q \rightarrow M)$ by completing the provided template.
Proof. Either $P \quad$ is true or it is false.
Case 1: $P$ is true The expression $(P \wedge Q) \rightarrow M$ in this case
can be simplified to $Q \rightarrow M$ by the equivalence of $T \wedge Q$ and $Q$.

The expression $P \rightarrow(Q \rightarrow M)$ in this case can be simplified to $Q \rightarrow M$ by the equivalence of $T \rightarrow Q$ and $Q$.

Because the two are equivalent to the same thing, they are equivalent to each other.
Case 2: $P$ is false The expression $(P \wedge Q) \rightarrow M$ in this case
can be simplified to $\perp \rightarrow M$ by the equivalence of $\perp \wedge Q$ and $\perp$, which in turn is just $T$ regardless of the value of $M$.

The expression $P \rightarrow(Q \rightarrow M)$ in this case is $\perp \rightarrow(Q \rightarrow M)$, which is $T$ regardless of the values of $Q$ and $M$.

Because the two are equivalent to the same thing, they are equivalent to each other.
Since $(P \wedge Q) \rightarrow M \equiv P \rightarrow(Q \rightarrow M)$ is true in both cases, it is true in general.

