Name: \qquad CompID: \qquad
CS 2102 - DMT1 - Fall 2019 - Luther Tychonievich
Administered in class friday october 4, 2019

Quiz 05

Throughout this quiz, use quotes to delimit the ends of strings.
Write out the following in full.

1. $\{4,1\} \times\{1,2\}=$ \qquad
2. $\{4\} \times\{1,2\} \times\{3\}^{3}=$ \qquad
3. $\mathcal{P}\left(\})^{2}=\right.$ \qquad
4. Give two strings of length 3 belonging to $\{\text { " } \mathrm{a} \text { ", " } \mathrm{ok} \text { " }\}^{*}$: \qquad and \qquad
5. What is the longest subsequence* of "MATHEMATICS" that contains no vowels ${ }^{\dagger}$? \qquad
6. What is the image of $\{-1,0,1,2\}$ under $R(x)=x^{2}$? \qquad

For the following, assume the domain and codomain are \mathbb{N} (i.e., the functions are defined only if both are in \mathbb{N}, and undefined for all other values)
7. Give an example function that is not total: $f(x)=$ \qquad
8. Give an example function that is total but not invertable: $f(x)=$ \qquad
9. Give the relation corresponding to the function $f(x)=3 x: R(a, b)$: \qquad
10. Give an example relation that is not a function: $R(x, y)=$ \qquad

[^0]
[^0]: *A subsequence is a sequence that can be derived from another sequence by deleting zero or more elements without changing the order of the remaining elements.
 ${ }^{\dagger}$ The vowels in English are a, e, i, o, and u

