Name: \qquad CompID: \qquad
CS 2102 - DMT1 - Fall 2019 - Luther Tychonievich
Administered in class friday october 18, 2019

Quiz 06

This quiz refers to the following two definitions. The first we've seen before:
Definition 1 (Natural Number) The number 0 is a natural number. The number 1 is a natural number. For any two natural numbers, x and y, their sum $x+y$ is also a natural number. There are no other natural numbers.

The second is often left undefined, relying on an intuitive sense of what it means to be finite. However, having a few rules might help:

Definition 2 (Finite) Any integer you can write (and finish writing) in base-10 is finite. The sum or product of two finite numbers is finite. Any number whose absolute value is smaller than some finite number is finite.
problem 1 Proof by Induction
Complete the following proof by induction of the theorem "every natural number is finite."
Proof. We use induction. The induction hypothesis is that a number is finite.

Base case: $\underline{0}$ \qquad is finite, because it can be written using digits (i.e., " 0 ").

Inductive step: Assume that some $n \in \mathbb{N}$ \qquad is finite. Then $n+1$ must be finite because
$n+1$ is the sum of two finite numbers: n is finite by the inductive hypothesis, and 1 is finite because it can be written using digits (i.e., " 1 ").

It follows by induction that all natural numbers are finite.
problem 2 Proof by Contradiction
Complete the following proof by contradiction of the theorem "there is no largest natural number."
Proof. Assume there was a largest natural number, $m \in \mathbb{N}$, where $\nexists n \in \mathbb{N} . n>m$.
Consider the number $x>m$ defined as
$m+1$

We know that $x \in \mathbb{N}$ because
x is the sum of two natural numbers (m and 1).

But that contradicts $\nexists n \in \mathbb{N} . n>m$.
Because
assuming there was a largest natural number led to a contradiction,
there is no largest natural number.

