Name: \qquad CompID: \qquad
CS 2102 - DMT1 - Fall 2019 - Luther Tychonievich Administered in class friday october 31, 2019

Theorem $1 \forall n \in \mathbb{N} . \sum_{x=0}^{n} \frac{1}{2^{x}}=\frac{2^{n+1}-1}{2^{n}}$
problem 1 Proof by Induction
Prove the above theorem using induction.
Proof.
We proceed by induction.
Base Case When $n=0$ we have $\sum_{x=0}^{0} \frac{1}{2^{x}}=1$ and $\frac{2^{1}-1=1}{2^{0}=1}=1$, so the theorem holds for $n=0$.
Inductive step Assume the theorem holds for some $n \in \mathbb{N}$: that is, $\sum_{x=0}^{n} \frac{1}{2^{x}}=\frac{2^{n+1}-1}{2^{n}}$. Adding $\frac{1}{2^{n+1}}$ to both sides, we have $\frac{1}{2^{n+1}}+\sum_{x=0}^{n} \frac{1}{2^{x}}=\frac{1}{2^{n+1}}+\frac{2^{n+1}-1}{2^{n}}$; the left-had side is equivalent to $\sum_{x=0}^{n+1} \frac{1}{2^{x}}$ by the definition of summation; the right-hand side can be rearranged to get $\frac{1+2\left(2^{n+1}-1\right)}{2^{n+1}}=\frac{2^{n+2}-1}{2^{n+1}}$; this means that $\sum_{x=0}^{n+1} \frac{1}{2^{x}}=\frac{2^{n+2}-1}{2^{n+1}}$, or in other words that the theorem holds for $n+1$.

By the principle of induction, the theorem holds for all $n \in \mathbb{N}$.

