Name: \qquad CompID: \qquad
CS 2102 - DMT1 - Fall 2019 - Luther Tychonievich
Administered in class friday november 8, 2019
Theorem $1 \forall x \in\{a \mid a \in \mathbb{Z} \wedge a \geq-1\} . \sum_{k=-1}^{x} 12-2 k=26+11 x-x^{2}$
problem 1 Proof by Induction
Prove the above theorem using induction.
Proof.
We proceed by induction.
Base Case When $x=-1$ we have $\sum_{k=-1}^{-1} 12-2 k=14=26-11-1$, so the theorem holds for $x=-1$.

Inductive step Assume the theorem holds for some x; that is, $\sum_{k=-1}^{x} 12-2 k=26+11 x-x^{2}$. Consider the sum evaluated at $x+1$:

$$
\begin{aligned}
\sum_{k=-1}^{x+1} 12-2 k & =12-2(x+1)+\sum_{k=-1}^{x} 12-2 k \\
& =11-2 x+26+11 x-x^{2} \\
& =26+(11+11 x)-\left(1+2 x+x^{2}\right) \\
& =26+11(x+1)-(x+1)^{2}
\end{aligned}
$$

which means the theorem holds at $x+1$ as well.

By the principle of induction, the theorem holds for all $x \in\{a \mid a \in \mathbb{Z} \wedge a \geq-1\}$.

