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Project Summary 
The computing environments of the future will involve large numbers of small and inexpensive 
devices, communicating with each other and interacting with their physical surroundings to 
accomplish a task.  We propose to develop the programming languages, tools and methods necessary 
to produce robust, scalable and resource-efficient programs for these new computing environments. 
 
These new computing environments will require a fundamentally new computing paradigm that will 
differ in both substance and scale from previous work on concurrent programming and distributed 
systems.  Unlike current processors, processors in future systems will have direct links to the physical 
environment through distributed sensors and actuators.  Using thousands of tiny computational 
elements in place of a smaller number of larger computing devices enables a non-obtrusive 
computing medium with finer granularity of sensing and actuation.  Computing capacity can thus be 
embedded seamlessly into physical objects, for example, by spraying a target spot with a dust of 
computational elements for data measurement, embedding computing motes into fabric, equipment 
casing, ink, or paint, or dropping a myriad of small computationally augmented sensors on a disaster 
area to search for survivors and determine structural damage. 
 
While the hardware that enables this is becoming a reality, development of the software faces 
considerable challenges.  These challenges arise from scale, unreliable components, dynamic system 
topology, massive interaction with the physical environment in real-time, and the need to reason 
about emerging aggregate properties as opposed to individual component behavior.  In this research 
we propose to develop theory, methods and tools for massively distributed, environment-aware 
computing (more succinctly referred to as swarm computing).   
 
The state of swarm computing today is similar to that of sequential computing in the early 1950s.  
Developers painstakingly produce swarm programs by designing and programming the actions of 
individual devices, and converge on an acceptable program through extensive simulation and 
experimentation.  In the pre-compiler era, skeptical programmers believed that a mechanical process 
could not possibly produce code of comparable quality to that produced by highly skilled machine 
coders and that the cost of machine time is high enough to outweigh any possible savings in 
programmer effort.  The state of swarm programming today is similar: devices are still expensive 
enough and resources limited enough that applications are constructed in a painstaking, trial-and-error 
way to produce acceptable results for a given problem.  This will change soon as the costs of devices 
decreases and their capabilities increase, the human time required to develop swarm programs will 
come to dominate the other costs.   
 
Hence, we propose to develop the methods, languages and tools that will enable the principled and 
efficient development of swarm programs.  A key contribution will be a programming language and 
development tools that enable programmers to construct and reason about programs in these 
environments at an appropriate level of abstraction.  The language must allow the programmer to 
express programs at the level of aggregate behavior rather than the behavior of individual devices.  
Further, it should allow developers to control resource consumption at levels of detail appropriate to 
their requirements and application.  Instead of hand coding programs for a particular “machine” (in 
this case, a collection of devices operating in a physical environment), we will provide programmers 
with the ability to write a program once and automatically adapt it to different deployments.  Instead 
of requiring trial-and-error experiments to determine how a swarm program will behave in a new 
environment, we seek to develop principles and tools for predicting behavior. 
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ITR: A Framework for Environment-Aware, Massively Distributed Computing 
 
Advances in processor, memory and radio technology have made it possible to build small and cheap 
devices that are capable of sensing and altering their environment, communicating with nearby 
devices using short-range wireless channels, storing a small amount of state, and performing a limited 
amount of computation.  We will be able to deploy thousands to millions of these devices to perform 
a wide range of applications such as monitoring poorly accessible or dangerous environments like 
disaster areas, hostile territories and active nuclear fields.  Hostile or dangerous terrains make it 
impossible to build fixed infrastructures of powerful and expensive hosts.  Instead, swarm computing 
advocates the use of myriads of inexpensive devices placed arbitrarily in the environment and left 
largely unattended.  The capabilities of the swarm are drawn from network scale rather than from 
powerful individual components resulting in a high degree of built-in fault tolerance whereby the 
failure of many devices causes only a marginal decrease in the effectiveness of the application.  
 
We propose to develop a programming language for swarms of devices that allows a programmer to 
express an application in terms of desired aggregate behavior rather than explicitly programming 
individual devices.  We will produce a program synthesizer that automatically generates the 
appropriate device programs that will implement the aggregate behavior for a particular deployment.  
The program synthesizer draws from a library of primitives that can be combined to produce complex 
applications with known scaling and non-functional properties.  In addition to analytical results, we 
will test our approach using simulations and using a physical swarm composed of wireless devices 
with sensors and actuators. 
 
Our multidisciplinary team combines expertise in many areas, and we feel it is necessary to combine 
different skills and experiences to tackle this problem.  Tarek Abdelzaher focuses on networks and 
control theoretic approaches to systems problems; David Brogan specializes in multiagent systems 
and simulation; David Evans (PI) researches programming languages, software engineering and 
security. 

1. Scientific Objectives 
The design of programming languages for computing swarms poses several new challenges that stem 
from three interdependent peculiarities of these networks: scale, physical embedding, and device-
administrator ratio.   
 
Scale.  Swarm computing involves, as a main feature, a massive number of devices.  We therefore 
must derive system properties that emerge as the number of devices increases.  These properties need 
not necessarily hold for smaller numbers of devices.  An important evaluation criterion of our 
language implementation would be the minimum number (or density) of devices that needs to exist 
for the programmed properties to hold.  We call that number, critical mass.  The critical mass 
limitation is, in a way, the inverse of scalability limitations.  Traditional distributed computing 
typically designs algorithms that scale as the number of components increase.  The scalability of a 
distributed algorithm is defined by the maximum number of components for which performance is 
acceptable.  In contrast, primitives of swarm programming languages will have a distributed 
implementation that requires a minimum critical mass.  The designers of swarm applications need not 
be concerned with providing the desired behavior when the number of devices is low.   
 
Probability theory provides a rich vehicle for formal analysis of such scalable algorithms.  Properties 
of stochastic processes typically approach deterministic values when the number of trials increases.  
Similarly, a swarm application will elicit behaviors that emerge and stabilize with scale.  For 
example, implementing filters slightly predisposed for propagation of higher priority traffic in the 
network, will result in a strict and predictable prioritization scheme when the number of hops is large 
enough.  Note that typically, a trade-off exists between algorithm complexity and critical mass.  In the 
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prioritization example, it may be possible to enforce strict priorities on a per hop basis.  Such strict 
per-hop algorithms have a minimum critical mass of one.  However, they are difficult to implement 
due to distributed contention over the shared medium from multiple sources carrying traffic of 
different priorities.  Implementing an algorithm that simply has a higher probability of sending higher 
priority traffic first across a shared medium is easier but requires a larger path (i.e. a larger critical 
mass) for strict prioritization to emerge end-to-end.  Hence, our solutions will generally tend to rely 
on the simplest possible per-node behavior that is analytically determined to be likely 
(probabilistically) to provide desired global properties when critical mass is observed.   We may also 
implement different flavors of algorithms that differ in their simplicity/critical-mass trade-off.  For 
example, as the system ages to the point when the number of active nodes decreases below the critical 
mass of the simplest algorithm, a more computationally intensive algorithm can be invoked to 
maintain the property under the new resource constraints.   
   
Physical Embedding.  Swarm computing devices are typically equipped with sensors and actuators 
that make them capable of interacting directly with a physical environment.  This capability sets 
swarms apart from traditional networking infrastructures (such as the Internet), where the main 
problem is to control the flow of information.  Algorithms will need to be developed for controlling 
the exchange of information between the swarm computing network and the environment, as well 
implementing distributed actions on the environment when needed.   
 
Physical embedding also permits a different programming paradigm.  Current programming 
languages, at their very core, are vehicles for manipulating abstractions of computer hardware.  For 
example, data structures and operations performed on them are abstractions for manipulating content 
of memory locations and registers.  In contrast, in swarm computing the manipulated medium extends 
beyond computing hardware to encompass the physical environment as well.  Objects in that physical 
environment might have attributes that one may read within a swarm program.  This data, depending 
on its different attributes, may initiate events that manipulate the state of an object (e.g., by 
eliminating these objects from the environment as in a battle scenario), or change object attributes via 
nearby actuators.  Our programming system should be rich enough to allow programming physical 
interactions with the environment the same way we program manipulation of logical data structures 
today.  We will not focus on the physical mechanisms for affecting and sensing the environment, but 
rather on developing manipulation and observation primitives with semantics suitable to what is 
possible physically and on developing algorithms that exploit shared state using physical 
environments. 
  
Device-Administrator Ratio.   In typical environments today, there are a small number of computers 
per system administrator.  Most individuals have to act as their own system administrator for a single 
machine.  In larger organizations, a single overworked system administrator may be responsible for 
hundreds of machines.  With swarm computing, we need to have thousands or millions of computing 
devices per administrator.  We cannot expect people to repair or manipulate individual devices.  
Hence, swarm computing applications need to be able to operate largely autonomously, even in the 
presence of device failures and environmental changes.   
 
Due to their unattended mode of operation, swarm devices need more attention to be given to their 
automatic configuration, group formation, failure detection, and fault-tolerance.  Swarm applications 
cannot expect human administrators to repair malfunctioning devices; hence swarm programs should 
not rely on identifying individual devices.  This implies that most algorithms would have to support 
stateless operation or store state in a distributed, environmental fashion.   
 
Summary.  The primary scientific objectives of the proposed work are:  

1. Develop a theory, techniques and tools for reasoning about the scalability of massively distributed 
programs. 
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2. Develop techniques for analyzing and synthesizing swarm programs constructed by combining 
primitives defined over interacting groups. 

3. Define a class of primitives with known scaling properties and methods and languages for 
describing their functional and non-functional properties. 

2. Background 
Advances in hardware have reduced the cost of computation and communication to the point where it 
is now reasonable to imagine deploying applications on thousands to millions of independent 
computing and communicating devices with sensors and actuators.  In this section, we summarize 
recent trends in hardware devices and survey related work in programming paradigms, networks, and 
multiagent systems relevant to the proposed work.   
 
Devices.  The steady improvement of microprocessors has lead to devices costing a few dollars that 
are as capable as desktop computers of 1985.  Recent advances have led to dramatic reductions in the 
cost, size and power consumption requirements for electronic devices, wireless communications, and 
microelectomechanical systems (MEMS).  Several hardware models of sensor nodes have been 
developed, primary among them being the Rockwell WINS nodes [17] and the Berkeley motes [16].  
The Smart Dust project at Berkeley is building cubic millimeter-scale self-powered autonomous 
devices with the ability to perform computation and communication [60].  These devices currently 
run on a 4 MHz microcontroller and have 8 KB of program memory and 512 bytes of data memory.  
Versions of these devices are being developed that use infrared, radio frequencies, and lasers to 
communicate and have sensors for temperature, brightness, and magnetic fields.  Current versions of 
the devices last for about one week with continuous operation.  Eventually, we may be able to 
construct even smaller and cheaper devices using molecules.  It is expected that prototype molecular 
electronic devices will be built within a few years, although simple computers are probably at least a 
decade away [59].  The age of inexpensive computing and communicating devices is on the horizon.  
We can build the devices – the question is whether or not we can program them to do useful things. 
 
Programming Paradigms.  Work on amorphous computing has produced promising results in 
programming paradigms for massively distributed systems [95].  The amorphous computed is a 
similar application domain to swarms, except the devices are generally less powerful and considered 
to be immobile.  One technique for programming an amorphous computing medium is the Growing 
Point Language (GPL) [94].  GPL uses a botanical metaphor of growing points that can secrete 
pheromones that act as messages to nearby nodes, and lay down material that alters the state of 
particles in the amorphous computing medium.  Coore has demonstrated that this model is 
sufficiently powerful to program complex structures such as the interconnect topology of a CMOS 
circuit.  Our emphasis will be on techniques for describing and reasoning about the behavior of 
swarm programs. 
 
Tuple spaces are a model for concurrent programming that obviate the need for devices to have 
individual addresses [63, 91, 92].  A tuple space is a global shared associative memory.  It provides a 
method for adding, deleting, and reading information.  Since values in the tuple space cannot be 
modified, there is no need for synchronization – the values themselves provide all the necessary 
coordination.  The tuple space approach has many desirable properties, but a number of challenges 
would need to be overcome before it could be used in for swarm computing.  Scaling and mobility 
present major problems, since it is normally assumed that all nodes can see the entire tuple space.  
Partitioning a tuple space into neighborhoods may offer a partial solution, but this requires substantial 
changes to the programming model.  One approach is explored by LIME [93], a tuple space system 
designed for mobile environments.  In LIME, tuple spaces are transiently shared and distributed 
across mobile hosts according to network proximity.  In a swarm computing environment, it will not 
be practical to maintain a traditional tuple space even if it is transient.  Instead, there may be a use for 
an “ether” space where tuples are broadcast to neighboring nodes.  It is unclear whether or not the 
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much weaker semantics can support a useful programming model, but we believe it will be 
worthwhile to explore weaker variations on tuple space semantics for a swarm programming. 
 
Networking.  Although the principles of swarm computing are not necessarily tied to wireless 
networks, most interesting swarm computing environments are wireless.  Chemical diffusion and 
light are two wireless communication methods, but the most promising short-term technology is 
radio.  Efforts to develop IEEE 802.11b [61] for high-bandwidth wireless local-area networks and the 
Bluetooth [62] standard for low-cost, low-power small area networking will improve standardized, 
low-power wireless networking protocols.  Nagpal [5] and Bulusu and Heidemann et al. [6, 12] have 
studied location estimation using GPS beacons.  The Amorphous Computing group at MIT has 
studied the problem of organizing a global coordinate system from local information [64].  
Geographical forwarding is a promising dynamic addressing protocol, that fails in sparse regions of 
the network.  Xu, Heidemann, Estrin [6, 12] have proposed a geographical adaptive fidelity (GAF) 
algorithm in which equivalence classes of nodes are formed from a routing perspective.  The 
Intentional Naming System (INS) is a resource discovery and service location system designed to 
support dynamic networks [88].  This system requires that devices periodically advertise their name 
specifiers to a centralized server, which manages the communication among the group.  A swarm 
implementation of INS requires eliminating the server, but alternative device-level message-
propagation protocols may suffice. The arbitrary structures of the network and the limited 
computational abilities of the nodes make developing network primitives for swarm computing a 
challenging research area.   
 
Instead of routing messages between specific devices, work in sensor networks has explored 
protocols that transmit information to devices as needed based on application constraints.  A typical 
scenario is a collection of sensors is dropped on a battlefield to monitor troop movements and 
communicate relevant findings back to a command center.   One technique is a communication 
paradigm known as directed diffusion that distributes messages in a data-centric way [90].  Sensor 
devices produce data in the form of attribute-value pairs.  A sensing task is disseminated through the 
sensor network by setting up gradients that draw data matching requested attributes towards the 
request origin.  Rather than specify this device directly, however, directed diffusion sends data back 
in the direction of its request without needing to route data to a specific origin device.  The use of 
gradients enables robust, power-efficient communication without the need for complex routing 
algorithms.  In addition, these techniques take advantage of task-specific algorithms for aggregating 
sensor data.  Subramanian and Katz have generalized the techniques to develop an architecture for 
building self-configurable systems where a large number of sensors automatically coordinate to 
achieve a sensing task [89].  Swarm computing will use known techniques for organizing devices to 
produce a network suitable for a given program.  One goal of this research will be to produce methods 
for self-organizing devices based on the desired properties of the application, instead of requiring 
explicit programming. 
 
Multiagent Systems. Biological mechanisms used by insect swarms provide a source of inspiration 
for swarm computing.  The behaviors of ants, bees, and fish demonstrate a variety of group behaviors 
that have been studied extensively over the past century.  The distributed behaviors of ants produce 
self-organizing shortest-path selection [65, 66]. A novel approach to routing is inspired by the 
behavior ant colonies use to find the best route to a food source [84].  Insights are also gained from 
beetle circle defenses [86] and honeybees searching for a new home [85], foraging for food [67], and 
growing their hives [68].  Animals also demonstrate that grouping minimizes losses in hostile 
environments [69, 70].  We are inspired by biological systems, but don’t believe attempting to 
duplicate them is the best way to produce swarm programs.  As with humanity’s attempts to fly by 
mimicking birds, attempts to copy biology directly failed; it was only when the underlying principles 
behind the behavior were understood that we could produce flying behavior with machines.  
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Some artificial intelligence researchers and roboticists have focused on building and simulating 
robotic systems that utilize these group behaviors.  Research by Arkin, Mataric, Stone, and others [71, 
72, 73] demonstrates that hierarchical combinations of simple behavioral primitives result in 
coordinated foraging, search and rescue, and soccer playing.  These research projects explore the 
influence of heterogeneity, communication protocols, and uncertainty on task performance.   
 
Computer graphics researchers have also made contributions to simulation of groups and distributed 
control algorithms.  Reynolds accomplished early progress in the simulation of group behaviors [74] 
by developing simulated flocks of birds.  Each bird uses only information about nearby neighbors and 
the simple algorithms fail to work if global knowledge is used.  The group animation systems 
developed by computer graphics researchers Blumberg, Terzopoulos, and Thalmann [75, 76, 77] 
further demonstrate how simple behaviors can be combined to create more complex behaviors.  In 
particular, these researchers have investigated the ways simple behaviors are blended and the way one 
behavior supercedes or truncates competing ones.  Brogan’s research with multiagent groups of 
simulated agents possessing significant dynamics investigates the ways physical limitations affect 
group behaviors [79, 80, 81, 82]. These systems also demonstrate that simulated groups with simple 
behaviors could adapt to a dynamic environment.   

3. Research Plan 
Our research plan is focused on creating the programming system shown in Figure 1.  This comprises 
the following main tasks:  

1. Designing Seurat,1 a programming language for describing an application as a combination of 
primitive behaviors . 

2. Building a library of primitive behaviors defined over groups. 
3. Designing specification languages for the device and environment models.  These languages need 

to be sufficiently detailed and precise to allow automated reasoning about the devices and 
environments they describe, but also abstract and flexible enough to allow reasoning about 
deployments that scale to millions of interacting devices. 

4. Implementing development tools, compilers and deployment mechanisms for executing a 
program on a collection of small devices in a physical environment (the program synthesizer).  
The process of deploying a program on a computing swarm involves synthesizing the appropriate 
combination of primitive behaviors to implement the application on a given set of devices 
operating in a particular environment.   

 
The main tools we have for these tasks are abstraction and hierarchy.  Abstraction allows us to 
remove the details of physical devices and environments from the concern of the programmer; 
further, we are exploring new abstractions that provide convenient mechanisms for programmers to 
express interactions.  As group size becomes large, a hierarchy of abstractions controls the 
propagation and inheritance of primitive behaviors in a systematic and analyzable way.  The next four 
subsections describe each component or our architecture.  Section 3.5 discusses our experimental 
platforms. 

                                                      

1 Seurat is named for Georges Seurat, a pointillist painter.  Pointillism is a painting technique where a painting 
is constructed by painting many small dots of color, and stronger hues are created by carefully placing dots of 
pure colors.  Seurat is reported to have said, “They see poetry in what I have done.  No.  I apply my method, 
and that is all there is to it.”  We hope to achieve a similar effect with swarm programming – programmers will 
be able to construct what appear to be emergent programs by using well-defined and principled methods. 
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3.1 Seurat: A Programming Language for Swarm Computing 

To build a swarm application, we need tools for creating individual device programs from a desired 
high-level behavior.  We propose to design a program language that can be used to describe a desired 
aggregate behavior of an ad-hoc collection of devices.  Just as pointillist artists paint points that 
represent shapes and styles, our programming synthesizer determines the device programs (the points) 
that accomplish the functional properties (the shapes) and the non-functional properties (the styles) 
desired by the programmer.   
 
Aggregate Behavior Specification.  A swarm program must specify the desired aggregate functional 
and non-functional properties of the application.   Aggregate functional properties are expressed by 
combining primitives.  In addition, primitives may be customized using both first order and higher 
order parameters.  It is important to note, however, that Seurat does not allow behavior specification 
to program individual devices directly.  This restriction is what enables the program synthesizer to 
produce scalable applications.  For example, the swarm program functional description for a search 
and rescue application could be expressed as2:  
    (disperse (scan-distance) |? scan (target-code)) > broadcast (found-signal) 
   | listen (found-signal) >^ homing (found-signal) 
The disperse primitive moves the swarm towards a state where no two devices are within its distance 
parameter of each other (in this case, a value that depends on how large a region the devices can 
scan).  This is combined with the scan primitive, parameterized with a function that identifies the 
target to locate.  The |? combinator indicates that disperse and scan should be done concurrently, 
until scan is satisfied.  After this, the broadcast primitive takes over, transmitting a found-signal 
throughout the swarm to attract other devices to the location.  Simultaneously, the listen primitive 
directs devices to listen for the found-signal.  If it is heard, the device switches to the homing 
primitive that directs the devices to the signal location.  The >^ indicates that when listen is satisfied, 
homing should preempt all other behaviors competing for the same resources (in this case, the 
actuators that move the device). 
 
Non-Functional Properties.  Note that the functional description does not provide any guidance as to 
how to do the primitive (disperse, broadcast, etc.) behaviors.  Unlike a traditional programming 
language where there is typically only one way to perform a primitive operation determined by the 

                                                      

2 This example is not meant to reflect the actual syntax and semantics of Seurat, but rather to give a flavor for 
what that language might be and an idea of what our vision is for programming by combining primitives 
defined as aggregate behaviors.  Actually figuring out the details of the syntax and semantics is a challenging 
part of the proposed research.  The rough syntax and semantics used here has many flaws and ambiguities, 
which would need to be addressed by a final language definition. 
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Figure 1.  Swarm Programming System. 
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operand types, there are many possible ways of implementing each of the primitive swarm behaviors.  
There is no single best implementation, but rather a set of implementations that exhibit different non-
functional properties over different scales and types of devices.  The program synthesizer must 
choose a combination of these implementations that best satisfies the non-functional requirements of 
the applications and the properties of the devices and environment on which it will be deployed. 
 
Non-functional properties include resource consumption, efficiency, security and survivability.  The 
programming language needs to provide constructs for expressing these properties at varying levels of 
detail.  For example, a home application for cleaning floors would need to specify the resource 
consumption requirements to indicate that it is important that device batteries not need to be 
recharged frequently.  On the other hand, a search and rescue application for a hostile environment is 
more concerned with efficiency, security and survivability.  Although these applications are 
functionally quite similar, their implementations are likely to differ considerably.  The programmer, 
however, should not need to be concerned with those details.  Instead, she should be able to separate 
the functional and non-functional requirements of the application and define different non-functional 
requirements at different levels of abstraction depending on her particular application requirements. 
 
Aggregate Behavior Control.  A key mechanism for realizing different non-functional properties 
lies in our ability to generate primitive implementations that trade-off resources for performance in a 
way that is consistent with the non-functional properties required. This trade-off should be guided by 
an objective function that expresses global performance requirements of the implementation. The 
device programs should be constructed to achieve these global performance requirements. To achieve 
this end, we break the problem into two independent questions: how to relate local performance of the 
device to global performance metrics and how to control global performance to adhere to 
specifications. 
 
To provide an analytic foundation for answering these questions, we propose to develop real-time 
control theory, a new branch of distributed computing that describes the mathematical properties of 
controlling massively distributed software system components to achieve desired non-functional 
performance assurances. This theory relates time, information content, communication constraints, 
and environmental stimuli to internal software state representative of language primitive goals and 
progress.  The theory will provide guarantees on the proximity of actual primitive behavior to the 
specified behavior.  Such guarantees translate into specifications on the transient response of 
performance control loops upon load changes.   
 
We shall investigate alternative swarm representations for the purposes of performance control under 
the new theory.  The main distinction of the new representations is that they describe swarm 
dynamics independent of an accurate load and resource requirements model.  Thus, lack of prior 
estimates of load and resources will not affect the integrity of the model used for performance control.   
   
The investigators have applied control theory successfully in several case studies involving 
distributed computing applications including performance guarantees in web servers [37,38], Internet 
server delay control [30], proxy cache relative hit ratio control [32], and microprocessor thermal 
management [26].  We have also had success with differential equation modeling of software 
systems.  Unlike queuing models and real-time scheduling models, differential equation models 
describe system dynamics independently of the characterization of input load.  For example, in [34] 
we describe a liquid flow model of a real-time system for the purposes of controlling its deadline miss 
ratio.  In [31,33] we show how a commercial server is modeled by a differential equation to handle 
overload.  In [35], we describe a self-profiling subsystem that derives system models automatically 
without external intervention.  We shall extend these models to massively distributed systems. 
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Our preliminary results [30,31,32,33] show that PID controllers can be used effectively for enforcing 
resource allocation decisions in large software systems when system parameters (differential equation 
coefficients) are constant.  Elements of adaptive and robust control theory will be applied to situations 
where system parameters are unknown or change at run-time.  For example, deadline misses in real-
time systems increase nonlinearly with increased resource utilization.  We shall investigate adaptive 
feedback control and robust control techniques to account for system parameter uncertainty and 
variations.  To control a system with multiple objectives, multivariable control schemes will be 
developed to implement device algorithms that achieve an aggregate behavior of choice. 
 
Manipulating Physical Environments.  A programming language typically includes an abstract 
address space in which a programmer can create and manipulate objects.  These objects provide an 
abstract way to manipulate bits represented by machine hardware and storage systems.  In contrast, 
Seurat assumes a distributed machine that includes not only the traditional hardware and memory 
local to a single device, but also a myriad of sensors and actuators that constitute an integral part of 
the architecture.  Programmers should be able to use abstract programming constructs to manipulate 
and sense physical environments outside the device, as programmers today are able to use abstract 
programming constructs to manipulate and acquire values from machine registers and storage.  The 
right abstractions for dealing with state in a physical environment, however, remain to be discovered.  
Unlike traditional computer hardware, state represented in physical environments is subject to 
physical processes such as diffusion and evaporation.  
 
Time.  Time is a variable of prime importance in any system that interacts directly with a physical 
environment.  Our team includes expertise in adaptive real-time computing which was the PhD topic 
of one of the investigators [40].  Our goal is to develop programming primitives with predictable 
timing performance.  Techniques for predicting and controlling timing behavior have been 
investigated at length in the real-time systems community.  Our particular interest lies in extending 
these techniques to massively distributed systems.  In particular, we are interested in developing 
theory that relates timing guarantees on primitive behavior to network load, such that bounding the 
latter will imply satisfaction of the former.  Systems that behave unpredictably on a microscopic scale 
often tend to have more predictable aggregate properties.  We shall develop algorithms that derive 
aggregate performance models and utilize them to provide timing guarantees.  Examples include 
utilization bounds that guarantee meeting individual primitive deadlines as long as aggregate resource 
utilization remains below certain limits.  In initial work, we derived such bounds for tasks with 
unknown arrival times [29].  These results will be useful in the implementation of programming 
primitives that must execute in bounded time. 

3.2 Building a Primitives Library 
Implementation of high-level language primitives will require the design of distributed algorithms 
that achieve the aggregate behavior specified by the primitive.  The collection of such algorithms 
constitutes the primitives library to be used by the compiler for code generation. 
 
It is important to note that the primitives library is not a system library in the traditional sense – rather 
than being a fixed functional implementation, each primitive encompasses a large class of 
implementations that can be adapted and scaled to particular device, environment and behavioral 
requirements.  Unlike the swarm programs that must be described at the level of aggregate behavior, 
implementations of library primitives define the behavior of individual devices.  They are 
programmed using traditional programming methods (e.g., a Java program that uses an API which 
abstracts operations on device sensors and actuators).  The challenge is to be able to analyze the 
primitives well enough to describe their behavior formally in a way that can be scaled to different 
numbers of devices and adapted to different devices and environments. 
 
In an earlier section, we described the factors that underlie the most obvious differences between the 
nature of algorithms we shall develop for implementing swarm primitives and previous research in 
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traditional distributed computing.  We will provide primitives at various levels of abstraction.  At the 
lowest level, we have primitives that deal specifically with communication; next, we have primitives 
for organization; at the highest level, we have behavioral primitives.  To synthesize a swarm program, 
the program synthesizer must select different implementations of primitives at each level. 

3.2.1. Communication Primitives 
Communication support for swarm computing poses several challenges that arise from the three 
distinctive properties of swarm systems described earlier: scale, physical embedding, and 
administrator ratio.  The challenges addressed in this project are as follows: 
 
Addressing.  When thousands of devices exist per administrator, the identity of a single device 
becomes irrelevant.  Hence, new addressing techniques need to be developed which do not rely on 
single-device identifiers.  Such schemes will rely on sets of diffused logical coordinates that create 
gradients along different geographic dimensions in the network.   
 
Routing.  Current routing algorithms rely on device identifiers that can be mapped into routing 
decisions such that a message is sent to the destination.  In a network where individual devices do not 
have identifiers, routing may rely on other means such as physical clues from the environment or the 
gradients created by the addressing scheme.  We call such clues and gradients, physical context.  For 
example, geographic routing algorithms may be appropriate which forward messages to specific 
locations rather than specific devices.  Geographic location, in this case, is an attribute of the physical 
context of the message destination.  A calculus will be developed to allow developing routing 
algorithms that use addresses based on abstract coordinate systems for forwarding data towards the 
destination.   
 
Transport layer services.  Current networks rely on high-level communication abstractions such as 
sockets (IPC) in which a device can establish a data connection with another device for information 
exchange.  In this model the device is permanently associated with the connection end-point.  In 
contrast, when individual devices are not important, connection endpoints may be associated with 
pools of devices that share a particular context or attributes, such as all devices within one centimeter 
of location x.  This pool of devices may dynamically change while preserving the end-point 
abstraction. 
 
Congestion control.  From the perspective of the global network of elementary nodes, a key problem 
is to ensure that the network is not too overloaded to perform its basic function – convey information.  
This function is achieved with congestion-control algorithms.  The most prominent such algorithm is 
TCP congestion control.  Unfortunately, TCP cannot work in the new environment because of its 
wireless, unreliable nature and because of the lack of an IP layer, or a similar layer that exports node 
addresses.  A different form of congestion control will need to be implemented. 

3.2.2. Organization Primitives 
Organization primitives will provide higher-level functionality for group and hierarchy formation.  To 
develop scalable behavioral primitives, we need primitives that scale by organizing devices into 
dynamic, adaptable hierarchies.  The organization primitives must be designed to be resilient so that 
they succeed even when implemented by only a fraction of devices.  Further, each primitive may be 
implemented in different ways that trade-off different non-functional properties.  Example 
organization primitives include: 
 
Team management.  While individual devices are not important in the new computing environment, 
it will be important to create abstract higher-level entities that are addressable and can perform 
computational functions as dictated by the programmer.  These entities will be implemented at a 
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lower level by dynamically evolving teams of elementary nodes.  Hence, team management will be an 
important challenge in the new environment. 
 
Data management and storage.  An important function of the network will be to collect and process 
data.  This data will often need to remain in the network until it is explicitly requested, or until some 
critical event is identified that needs to be propagated immediately to the users.  Hence, data 
management and storage will be an important network function.  The problem is tightly related to that 
of web caching, except that in a sensor network case, data updates can originate from any node in the 
network.  Moreover, no node is powerful enough to act as a centralized data cache or storage facility.  
Instead, fully distributed solutions are needed. 
 
Priority control.  The network may be employed to perform distributed tasks such as data 
communication and storage, team management, and others.  In the presence of multiple tasks and 
limited resources the system should have a way of consistently prioritizing its operations.  Protocols 
will need to be developed to determine priorities of different activities in a distributed manner and in 
a way that maximizes system utility.  Mechanisms for priority enforcement will be implemented to 
carry out the priority order computed by the aforementioned algorithms. 

3.2.3. Behavioral Primitives 
The behavioral primitives are programmed using the system services as well as new device code.  
Devices provide different functionality, but all devices must provide standard interfaces that can be 
used to create the primitives and underlying services.  The library must provide a set of behavioral 
primitives that provide sufficient functional behaviors to allow a large class of complex swarm 
applications to be written.  One of the theoretical questions we will address is whether there is a small 
set of primitives from which a large well-defined class of applications can be created.  In addition, the 
library must provide implementations of those primitives that can be used to provide different non-
functional properties.  One area we will explore is whether certain kinds of primitive implementations 
can be combined so that a few primitive implementations and combination mechanisms will provide 
access to a large design space of non-functional properties.  Determining the set of behavioral 
primitives is part of the proposed research.  Some examples of likely behavioral primitives include 
disperse, scan and homing introduced in Section 3.1.  We expect that the final library will have 
around twenty behavioral primitives.  We will define a class of swarm computing programs that can 
be created using the library primitives.   
 
Here, we consider how disperse might be specified and implemented.  The end state of disperse 
satisfies a constraint of the form that no two devices are within d distance of each other.  A naïve 
implementation of disperse would program each device to detect the number of devices within d of it 
by transmitting a message with the appropriate power to cover the d distance region surrounding it.  If 
one or more devices respond, move randomly for a short distance and try again.  The naïve disperse 
implementation is neither time nor power efficient, but its simplicity and symmetry make it easier to 
reason about.  Alternative implementations that offer different tradeoffs between time and power 
given different costs for communication, computation and movement will be explored.  We have 
conducted preliminary experiments with an implementation in which devices communicate in a 
hierarchical way to locate areas of low density and then move towards those low density areas.  This 
approach achieves dispersion in about 1/10th the time of the naïve implementation, but with 
significant communication costs.  We have conducted preliminary experiments in which some 
fraction of the swarm runs the naïve implementation and the rest run the density driven 
implementation to illustrate that many points in the design space for trading off quick results and 
communication costs can be achieved with just two implementations.     
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3.3 Specifying Environments and Devices 
To generate device implementations for a Seurat program, the program synthesizer needs to be aware 
of the application requirements, the properties of the devices in the swarm and the environment in 
which it will execute.  The non-functional properties, capabilities and relative costs of 
communication, action and computation in the deployment environment determine the combination 
of primitive implementations that will be used on the devices.  In addition, failure modes, the 
likelihood of hostile exogenous events and the importance of degrading gracefully for certain types of 
failures all affect the appropriate implementation choices.   Our programming system is designed to 
separate those factors from the behavioral program by providing specifications of environments and 
devices and using the program synthesizer to select appropriate implementations. 
 
A key challenge in the device and environment specifications is determining the appropriate level of 
abstraction.  If the specifications contain too much detail, the complexity for both humans and the 
programming tools will quickly become unmanageable.  If they contain too little, there will not be 
sufficient information available to the synthesizer to select the right combination of primitive 
implementations.  We propose to take an approach based on variable levels of detail.  For example, in 
some applications it may be necessary to describe the communication costs properties of the 
environment in great detail; in others, it may be sufficient to know a radius distance within which 
communication is almost always successful.  Programmers should be able to use different levels of 
detail based on the requirements of their application, and rely on the programming system to make 
sensible assumptions in cases where details are not provided.   
 
We also plan to explore methods for describing hostile environments, for example where an intruder 
will deliberately destroy clusters of devices or jam communications.  Although not much work has 
been done in this area, our colleagues’ work on describing and simulating vulnerabilities in Raptor 
[41] offers a good starting point for this exploration. 

3.4 Deploying Swarm Programs 
The Seurat programming model is different from the traditional compile, link, ship and execute 
sequence.  Unlike in traditional systems where it is adequate to send identical binaries to all hosts, we 
anticipate most Seurat programs need to execute on a wide range of devices and in a variety of 
environments.  The combination of primitives selected to implement a program depends heavily on 
the capabilities and number of available devices and the physical properties of the deployment 
environment.  We envision a day when individuals would have a swarm deployment device in their 
home.  It would (using initial discovery programs and devices) learn about the surrounding 
environment and be configured according to the number and kinds of devices its owner has 
purchased.  A new Seurat program would be downloaded to provide some new functionality, and the 
program synthesizer would synthesize appropriate programs for the owner’s devices and 
environment, install those programs on the devices and launch them to carry out the application.  This 
all needs to happen without the owner doing anything other than perhaps selecting a new application 
to deploy. 
 
Our short term goals are more modest.  We assume device and environment specifications will be 
provided and focus on the problem of selecting the appropriate combination of primitive 
implementations for an application given its behavioral description, nonfunctional requirements, and 
the device and environment specifications.  
 
Another crucial aspect of application development is debugging.  Massively distributed programs are 
particularly difficult to debug; the nondeterminism and lack of reproducibility in the environment 
further exacerbate the problem.  We will need to develop tools that allow programmers to monitor 
and adjust an application at a variety of levels.  Occasionally, it will be useful to examine the state 
and operation of a single device.  More often, though, debugging will need to be done at a higher 
level.  Attempting to debug a swarm program by examining the state of individual devices would be 
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like debugging a C++ program by examining the state of individual electrons in the machine core.  
Instead, we need to develop tools that allow programmers to monitor and evaluate properties of the 
swarm as a whole.  Our preliminary work in this area has produced a tool that takes a simulation log 
and an evaluation function that produces a value for a snapshot of the world state and allows the 
programmer to see the value of that evaluation function over time [42].  This simple tool points the 
way to more adaptive and powerful techniques for debugging and evaluating swarm programs. 
 

3.5 Experimental Platforms 
We will conduct experiments using both physical and simulated environments.  Physical experiments 
are useful for validating our approach and revealing important issues that may be hidden in a 
simulation.  However, limits on the number of devices available to us in a physical experiment make 
it impossible to test scaling over a sufficiently large range.  Hence, we will focus on simulation 
experiments, and use physical experiments to test the realism of our simulations. 
 
Physical Experiments.  At present, we have a lab with a limited number of Berkeley motes [16], 
which run a micro-threaded operating system called TinyOS [16].  Each mote has up to three 
embedded sensors.  It includes a 8-bit 4 MHz micro-controller and has 8KB of program memory and 
512 bytes of data memory.  TinyOS, itself takes about 180 bytes of data memory, and around 4KB of 
program memory.  Future versions of the motes, which we expect to get in January 2002, will have 
about 10 times the memory resources.  The motes represent one possible point in the design space for 
swarm computing devices.  
 
Simulator Experiments.  We will conduct experiments using several different simulators augmented 
with analysis and code generation tools we develop.  Because we need to deal with both low-level 
behavior of physical devices (e.g., modeling power consumption and communication reliability) and 
the high-level behavior of collections of millions of devices, there is no one simulator that is adequate 
for all aspects of the project.  Our team currently has experience with several simulators spanning the 
design space we need to consider.  These include: 
 
Santa Fe Swarm simulator [43].  The Santa Fe Swarm simulator provides an easy interface for 
modeling device behaviors and decent tools for visualizing swarm programs.  It scales to a few 
thousand devices, but is likely to be too slow for large scale experiments.  In our preliminary work, 
we have used Swarm to simulate several implementations of swarm primitives.  Its programming 
interface is simple enough that good undergraduate students are able to quickly develop and begin 
experimenting with primitive behaviors [44]. 
 
Raptor [41].  Raptor is a simulator for survivability research developed at UVA.  It scales to support 
tens of thousands of nodes.  Raptor provides a model for injecting controlled and catastrophic failures 
into large networks that will be useful for our experiments involving hostile environments. 
 
RoboCup Soccer Server [45].  The Soccer Server provides a semi-realistic physical simulation of 
robots on a soccer field.  It includes models of unreliable physical movement, communication and 
vision.  We have used the Soccer Server to experiment with behavioral swarm primitives in a more 
hostile and realistic environment than the Santa Fe Swarm simulator [47]. 
 
SD/Fast [82].  SD/Fast is a commercial rigid-body simulation system.  This software system permits 
the development of accurate physical simulations of devices and the environments in which they 
exist.  We anticipate using this software to accurately model the scattering of devices on uneven 
terrain and to simulate the movements of mobile devices. 
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NS2 [20]: This is the most widely used network simulator today for IP networks. It also has extensive 
support for wireless simulation that may be used for simulating large sets of devices in a physical 
environment. SensorSim is an NS2-based simulator that focuses on sensor networks. 
 
Centurion.  We also have access to Centurion, a 300 machine cluster developed at UVA [46].  
Centurion has been used successfully in several large scale simulation experiments.  We will be able 
to use Centurion to run massive scale simulation experiments as necessary to develop.  

4. Impact Summary 
Our goal is to develop a new program paradigm for the environment-aware, massively distributed 
applications of the coming decades.  While it would be unreasonable to expect to meet the many 
challenges towards that goal within three years, we do expect to make concrete progress on several 
fronts.  In particular, we expect to have: 

• Designed the Seurat programming language for swarm computing, and described its 
semantics in a precise way. 

• Developed a library of communication, organization and behavioral primitives.  For each 
primitive, we will have a functional specification, and multiple implementations with 
different non-functional properties.  

• Developed theories for combining implementations of primitives.  Identified and defined a 
class of implementations which can be combined with predictable properties.   

• Gained an understanding of the scaling properties of swarm programs.  Developed tools and 
methods for managing massively scalable applications. 

 
We request 3 years of funding.  We anticipate achieving these milestones by the end of each year: 
 
Year 1: 
• Designed the Seurat programming language and languages for specifying nonfunctional 

requirements and device and environment properties. 
• Produced results from simulating combinations of primitives in different environments.   
• Developed preliminary theoretical foundations and tools for analyzing aggregate behavior of a 

large number of devices. 
• Analyzed the critical mass for a number of primitive behaviors.  Validated these results with 

simulation experiments. 
• Invented techniques for casting non-functional assurance problems into feedback performance 

control problems. 
 
Year 2: 
• Developed a prototype swarm program synthesizer that takes a Seurat program, nonfunctional 

requirements description, primitives library, device and environment models and produces 
individual device programs. 

• Produced formal descriptions of the semantics of our programming and specification languages. 
• Investigated the composition properties of classes of implementations of primitive behaviors and 

developed a theory for composition that addresses scale and nonfunctional properties. 
• Expanded the primitives library to include adaptive algorithms that trade-off resource 

consumption for performance. 
• Developed an experimental physical test bed of static motes with sensors and radio transceivers. 
• Implemented distributed protocols for aggregate behavior control based on theoretical results 

from year 1 in both simulated and physical experiments. 
• Implemented a communication micro-protocol stack for small devices including link, network, 

and transport layer functionality that addresses the concerns of section (Implementing the 
primitives). 
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Year 3: 
• Produced a complete swarm program synthesizer that is capable of generating device programs 

for a large (well-defined) class of applications and a range of number and capabilities of devices 
and environments. 

• Produced a library of swarm primitives that is sufficiently comprehensive to be able to produce 
swarm programs with a wide range of nonfunctional properties. 

• Produced analytical and experimental results on the composition of primitive implementations.  
Specified a set of implementation properties that lead to predictable composition properties. 

• Extended the physical testbed to include mobile devices that can alter the environment.  
Conducted experiments using the physical testbed with applications that store and manipulate 
state in the environment. 

 
We will disseminate our results through publications, talks, web sites, course materials and software.  
The proposers have successful track records for distributing and supporting software3 and believe it is 
worth the significant effort require to make software available and useful to other researchers both to 
validate our own work and to foster a vibrant research community. 

5. Results of Prior NSF Support 
Tarek Abdelzaher is currently funded by an NSF CAREER award (“A Pull-Based Architecture for 
Active Web Content Replication”, CCR-0093144), NSF grant ANI-0105873 (“A Framework for 
Utilization-Based Absolute Delay Guarantees Using Adaptive Data Prefetching”) and is a co-PI on 
NSF grant CCR-0098269 (“A Control-Theoretic Approach to Performance Guarantees in 
Performance-Critical Systems”). The first two grants develop different distributed algorithms for 
caching and content management in a web environment. The second develops performance feedback 
control algorithms for software systems. These grants resulted in multiple publications 
[26,27,28,29,30,32,33,34] and software prototypes that provide a good analytic foundation for 
software control as well as expertise that may be leveraged in a deeply distributed system context 
with performance assurances. 
   
David Brogan is co-investigator on a recent NSF CISE Research Resources award (0130800) that 
funds the purchase of the hardware required to build an immersive display system.   This hardware 
will be used to support Brogan's research of simulation level of detail as a perceptually acceptable 
simplification technique for computer animation.  
 
David Evans has been funded by NSF CAREER (“Programming the Swarm”, CCR-0092945) since 
March 2001.  The proposed work complements well both the research and educational work of the 
CAREER proposal.  The work funded under NSF CCR-0092945 has contributed to five publications 
[47, 50, 56, 57, 58] and two papers currently in submission.  The grant funds one graduate student.  
She is focusing on security properties of stigmeric algorithms, in particular their resistance and 
vulnerability to certain classes of attack.  Two undergraduates have been supported since July 2001 
using an REU supplement (GA10183).  Ten undergraduate students are currently working (as 
volunteers, independent study projects, and on undergraduate thesis projects) with the PI on research 
directly connected to this project.  

                                                      

3 David Evans has distributed and supported LCLint, an extensible tool for lightweight static analysis that 
exploits program annotations to detect likely security vulnerabilities, memory management problems, and other 
common errors in C programs since 1994 [47, 49, 50].  LCLint has several thousand active users and is 
described in several articles and books directed at working programmers [51, 52, 53, 54, 55].  
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