STREAM on GS320

From: John Henning (henning@perfom.zko.dec.com)
Date: Thu May 11 2000 - 17:21:39 CDT

  • Next message: John Henning: "STREAM on GS160 (confidential until Tuesday)"

    Hi John,

    This is the AlphaServer GS320, with 32 CPUs. Thanks for agreeing to
    set up a cron job to make it visible early Tuesday!

    Just fyi: The following edits have been applied to the material
    that follows:
      whitespace/lines added for readability;
      line wraps added to long lines (so mailers don't wrap them);
      control characters removed that my shell graciously (?) inserted
          when I used some of its features.

    Thanks again
       - john

    Script started on Wed May 10 13:29:09 2000
    % head -1 /etc/motd
    Compaq Tru64 UNIX T5.1-9 (Rev. 564); Wed May 10 11:58:33 EDT 2000
    % what /shlib/libpthread.so | grep DECth
          DECthreads version V3.18-023 May 9 2000
    % diff stream_d.f_as_at_ftp_site_22may97 mcc_omp_nodebug.f
    0a1
    > * this version 09-May-2000 j. henning
    52,53c53,54
    < INTEGER n,offset,ndim,ntimes
    < PARAMETER (n=2000000,offset=0,ndim=n+offset,ntimes=10)

    ---
    >       INTEGER*8 n,offset,ndim,ntimes,maxtimes
    >       PARAMETER (maxtimes=10000)
    57c58,59
    <       INTEGER j,k,nbpw,quantum
    ---
    >       INTEGER*8 j,k,nbpw,quantum
    >
    61,62c63,64
    <      $                 times(4,ntimes)
    <       INTEGER bytes(4)
    ---
    >      $                 times(4,maxtimes)
    >       INTEGER*8 bytes(4)
    75c77
    <       DOUBLE PRECISION a(ndim),b(ndim),c(ndim)
    ---
    >       REAL*8, ALLOCATABLE:: a(:),b(:),c(:)
    88a91,97
    >       PRINT *, "n, offset, ntimes"
    >       READ *, n, offset, ntimes
    >       ndim=n+offset
    >       IF (ntimes .gt. maxtimes) ntimes=maxtimes
    >
    >       ALLOCATE (a(ndim), b(ndim), c(ndim))
    >       CALL defend_wrap
    94c103
    <      $  3*nbpw*n/ (1024*1024),' MB'
    ---
    >      $  3D0*nbpw*DBLE(n)/ (1024d0*1024),' MB'
    97a107,108
    > c$omp parallel
    > c$omp do
    102a114
    > c$omp end parallel
    103a116,117
    > c$omp parallel
    > c$omp do
    106a121
    > c$omp end parallel
    128a144,145
    > c$omp parallel
    > c$omp do
    131a149
    > c$omp end parallel
    135a154,155
    > c$omp parallel
    > c$omp do
    138a159
    > c$omp end parallel
    142a164,165
    > c$omp parallel
    > c$omp do
    145a169
    > c$omp end parallel
    149a174,175
    > c$omp parallel
    > c$omp do
    152a179
    > c$omp end parallel
    154a182
    >
    170a199
    >
    185c214
    <  9020 FORMAT (1x,a,i4,a)
    ---
    >  9020 FORMAT (1x,a,f10.2,a)
    334a364,383
    >       END
    >
    >       SUBROUTINE DEFEND_WRAP
    >       INTEGER count, count_rate, count_max
    >       CALL SYSTEM_CLOCK ( count, count_rate, count_max )
    >       IF (DBLE(count) .GT. .999*DBLE(count_max)) THEN
    >          PRINT *,"Oops, this code won't handle a wrapping system_clock"
    >          PRINT *,"and soon we will wrap."
    >          PRINT 4, "count:", count, "count_max:", count_max
    >   4      FORMAT (1X, A10, I16)
    >          PRINT *,"Try again later, or fix the code to handle wraps."
    >          PRINT *,"(The counter wraps approx once every 60 hours)"
    >          STOP
    >       END IF
    >       END
    >
    >       DOUBLE PRECISION FUNCTION second
    >       INTEGER count, count_rate, count_max
    >       CALL SYSTEM_CLOCK ( count, count_rate, count_max )
    >       second = DBLE(count)/DBLE(count_rate)
    %
    

    ------------------------------

    % cat !$ % cat mcc_omp_nodebug.f * this version 09-May-2000 j. henning * Program: Stream * Programmer: John D. McCalpin * Revision: 4.1, June 4, 1996 * * This program measures memory transfer rates in MB/s for simple * computational kernels coded in Fortran. These numbers reveal the * quality of code generation for simple uncacheable kernels as well * as showing the cost of floating-point operations relative to memory * accesses. * *========================================================================= * INSTRUCTIONS: * 1) Stream requires a cpu timing function called second(). * A sample is shown below. This is unfortunately rather * system dependent. The code attempts to determine the * granularity of the clock to help interpret the results. * For dedicated or parallel runs, you might want to comment * these out and compile/link with "wallclock.c". * 2) Stream requires a good bit of memory to run. * Adjust the Parameter 'N' in the main program to give * a 'timing calibration' of at least 20 clicks. * This will provide rate estimates that should be good to * about 5% precision. * ------------------------------------------------------------ * Note that you are free to use any array length and offset * that makes each array larger than the last-level cache. * The intent is to determine the *best* sustainable bandwidth * available with this simple coding. Of course, lower values * are usually fairly easy to obtain on cached machines, but * by keeping the test to the *best* results, the answers are * easier to interpret. * You may put the arrays in common or not, at your discretion. * There is a commented-out COMMON statement below. * ------------------------------------------------------------ * 3) Compile the code with full optimization. Many compilers * generate unreasonably bad code before the optimizer tightens * things up. If the results are unreasonably good, on the * other hand, the optimizer might be too smart for me * Please let me know if this happens. * 4) Mail the results to mccalpin@cs.virginia.edu * Be sure to include: * a) computer hardware model number and software revision * b) the compiler flags * c) all of the output from the test case. * * Thanks *========================================================================= * PROGRAM stream * IMPLICIT NONE C .. Parameters .. INTEGER*8 n,offset,ndim,ntimes,maxtimes PARAMETER (maxtimes=10000) C .. C .. Local Scalars .. DOUBLE PRECISION dummy,scalar,t INTEGER*8 j,k,nbpw,quantum

    C .. C .. Local Arrays .. DOUBLE PRECISION maxtime(4),mintime(4),rmstime(4),sum(3), $ times(4,maxtimes) INTEGER*8 bytes(4) CHARACTER label(4)*11 C .. C .. External Functions .. DOUBLE PRECISION second INTEGER checktick,realsize EXTERNAL second,checktick,realsize C .. C .. Intrinsic Functions .. C INTRINSIC dble,max,min,nint,sqrt C .. C .. Arrays in Common .. REAL*8, ALLOCATABLE:: a(:),b(:),c(:) C .. C .. Common blocks .. * COMMON a,b,c C .. C .. Data statements .. DATA rmstime/4*0.0D0/,mintime/4*1.0D+36/,maxtime/4*0.0D0/ DATA label/'Copy: ','Scale: ','Add: ', $ 'Triad: '/ DATA bytes/2,2,3,3/,dummy/0.0d0/ C ..

    * --- SETUP --- determine precision and check timing ---

    PRINT *, "n, offset, ntimes" READ *, n, offset, ntimes ndim=n+offset IF (ntimes .gt. maxtimes) ntimes=maxtimes

    ALLOCATE (a(ndim), b(ndim), c(ndim)) CALL defend_wrap nbpw = realsize()

    WRITE (*,FMT=9010) 'Array size = ',n WRITE (*,FMT=9010) 'Offset = ',offset WRITE (*,FMT=9020) 'The total memory requirement is ', $ 3D0*nbpw*DBLE(n)/ (1024d0*1024),' MB' WRITE (*,FMT=9030) 'You are running each test ',ntimes,' times' WRITE (*,FMT=9030) 'The *best* time for each test is used'

    c$omp parallel c$omp do DO 10 j = 1,n a(j) = 1.0d0 b(j) = 2.0D0 c(j) = 0.0D0 10 CONTINUE c$omp end parallel t = second(dummy) c$omp parallel c$omp do DO 20 j = 1,n a(j) = 2.0d0*a(j) 20 CONTINUE c$omp end parallel t = second(dummy) - t PRINT *,'----------------------------------------------------' quantum = checktick() WRITE (*,FMT=9000) $ 'Your clock granularity/precision appears to be ',quantum, $ ' microseconds' PRINT *,'The tests below will each take a time on the order ' PRINT *,'of ',nint(t*1d6),' microseconds' PRINT *,' (= ',nint((t*1d6)/quantum),' clock ticks)' PRINT *,'Increase the size of the arrays if this shows that' PRINT *,'you are not getting at least 20 clock ticks per test.' PRINT *,'----------------------------------------------------' PRINT *,'WARNING -- The above is only a rough guideline.' PRINT *,'For best results, please be sure you know the' PRINT *,'precision of your system timer.' PRINT *,'----------------------------------------------------'

    * --- MAIN LOOP --- repeat test cases NTIMES times --- scalar = 1.5d0*a(1) DO 70 k = 1,ntimes

    t = second(dummy) c$omp parallel c$omp do DO 30 j = 1,n c(j) = a(j) 30 CONTINUE c$omp end parallel t = second(dummy) - t times(1,k) = t

    t = second(dummy) c$omp parallel c$omp do DO 40 j = 1,n b(j) = scalar*c(j) 40 CONTINUE c$omp end parallel t = second(dummy) - t times(2,k) = t

    t = second(dummy) c$omp parallel c$omp do DO 50 j = 1,n c(j) = a(j) + b(j) 50 CONTINUE c$omp end parallel t = second(dummy) - t times(3,k) = t

    t = second(dummy) c$omp parallel c$omp do DO 60 j = 1,n a(j) = b(j) + scalar*c(j) 60 CONTINUE c$omp end parallel t = second(dummy) - t times(4,k) = t

    70 CONTINUE

    * --- SUMMARY --- DO 90 k = 1,ntimes DO 80 j = 1,4 rmstime(j) = rmstime(j) + times(j,k)**2 mintime(j) = min(mintime(j),times(j,k)) maxtime(j) = max(maxtime(j),times(j,k)) 80 CONTINUE 90 CONTINUE WRITE (*,FMT=9040) DO 100 j = 1,4 rmstime(j) = sqrt(rmstime(j)/dble(ntimes)) WRITE (*,FMT=9050) label(j),n*bytes(j)*nbpw/mintime(j)/1.0D6, $ rmstime(j),mintime(j),maxtime(j) 100 CONTINUE

    sum(1) = 0.0d0 sum(2) = 0.0d0 sum(3) = 0.0d0 DO 110 j = 1,n sum(1) = sum(1) + a(j) sum(2) = sum(2) + b(j) sum(3) = sum(3) + c(j) 110 CONTINUE PRINT *,'Sum of a is = ',sum(1) PRINT *,'Sum of b is = ',sum(2) PRINT *,'Sum of c is = ',sum(3)

    9000 FORMAT (1x,a,i6,a) 9010 FORMAT (1x,a,i10) 9020 FORMAT (1x,a,f10.2,a) 9030 FORMAT (1x,a,i3,a,a) 9040 FORMAT ('Function',5x,'Rate (MB/s) RMS time Min time Max time' $ ) 9050 FORMAT (a,4 (f10.4,2x)) END

    *------------------------------------- * INTEGER FUNCTION dblesize() * * A semi-portable way to determine the precision of DOUBLE PRECISION * in Fortran. * Here used to guess how many bytes of storage a DOUBLE PRECISION * number occupies. * INTEGER FUNCTION realsize() * IMPLICIT NONE

    C .. Local Scalars .. DOUBLE PRECISION result,test INTEGER j,ndigits C .. C .. Local Arrays .. DOUBLE PRECISION ref(30) C .. C .. External Subroutines .. EXTERNAL confuse C .. C .. Intrinsic Functions .. INTRINSIC abs,acos,log10,sqrt C ..

    C Test #1 - compare single(1.0d0+delta) to 1.0d0

    10 DO 20 j = 1,30 ref(j) = 1.0d0 + 10.0d0** (-j) 20 CONTINUE

    DO 30 j = 1,30 test = ref(j) ndigits = j CALL confuse(test,result) IF (test.EQ.1.0D0) THEN GO TO 40 END IF 30 CONTINUE GO TO 50

    40 WRITE (*,FMT='(a)') $ '----------------------------------------------' WRITE (*,FMT='(1x,a,i2,a)') 'Double precision appears to have ', $ ndigits,' digits of accuracy' IF (ndigits.LE.8) THEN realsize = 4 ELSE realsize = 8 END IF WRITE (*,FMT='(1x,a,i1,a)') 'Assuming ',realsize, $ ' bytes per DOUBLE PRECISION word' WRITE (*,FMT='(a)') $ '----------------------------------------------' RETURN

    50 PRINT *,'Hmmmm. I am unable to determine the size.' PRINT *,'Please enter the number of Bytes per DOUBLE PRECISION', $ ' number : ' READ (*,FMT=*) realsize IF (realsize.NE.4 .AND. realsize.NE.8) THEN PRINT *,'Your answer ',realsize,' does not make sense.' PRINT *,'Try again.' PRINT *,'Please enter the number of Bytes per ', $ 'DOUBLE PRECISION number : ' READ (*,FMT=*) realsize END IF PRINT *,'You have manually entered a size of ',realsize, $ ' bytes per DOUBLE PRECISION number' WRITE (*,FMT='(a)') $ '----------------------------------------------' END

    SUBROUTINE confuse(q,r) * IMPLICIT NONE C .. Scalar Arguments .. DOUBLE PRECISION q,r C .. C .. Intrinsic Functions .. INTRINSIC cos C .. r = cos(q) RETURN END

    * A semi-portable way to determine the clock granularity * Adapted from a code by John Henning of Digital Equipment Corporation * INTEGER FUNCTION checktick() * IMPLICIT NONE

    C .. Parameters .. INTEGER n PARAMETER (n=20) C .. C .. Local Scalars .. DOUBLE PRECISION dummy,t1,t2 INTEGER i,j,jmin C .. C .. Local Arrays .. DOUBLE PRECISION timesfound(n) C .. C .. External Functions .. DOUBLE PRECISION second EXTERNAL second C .. C .. Intrinsic Functions .. INTRINSIC max,min,nint C .. i = 0 dummy = 0.0d0 t1 = second(dummy)

    10 t2 = second(dummy) IF (t2.EQ.t1) GO TO 10

    t1 = t2 i = i + 1 timesfound(i) = t1 IF (i.LT.n) GO TO 10

    jmin = 1000000 DO 20 i = 2,n j = nint((timesfound(i)-timesfound(i-1))*1d6) jmin = min(jmin,max(j,0)) 20 CONTINUE

    IF (jmin.GT.0) THEN checktick = jmin ELSE PRINT *,'Your clock granularity appears to be less ', $ 'than one microsecond' checktick = 1 END IF RETURN

    * PRINT 14, timesfound(1)*1d6 * DO 20 i=2,n * PRINT 14, timesfound(i)*1d6, * & nint((timesfound(i)-timesfound(i-1))*1d6) * 14 FORMAT (1X, F18.4, 1X, i8) * 20 CONTINUE

    END

    SUBROUTINE DEFEND_WRAP INTEGER count, count_rate, count_max CALL SYSTEM_CLOCK ( count, count_rate, count_max ) IF (DBLE(count) .GT. .999*DBLE(count_max)) THEN PRINT *,"Oops, this code won't handle a wrapping system_clock" PRINT *,"and soon we will wrap." PRINT 4, "count:", count, "count_max:", count_max 4 FORMAT (1X, A10, I16) PRINT *,"Try again later, or fix the code to handle wraps." PRINT *,"(The counter wraps approx once every 60 hours)" STOP END IF END

    DOUBLE PRECISION FUNCTION second INTEGER count, count_rate, count_max CALL SYSTEM_CLOCK ( count, count_rate, count_max ) second = DBLE(count)/DBLE(count_rate) END %

    ------------------------------

    % cat buildit_nodebug.csh #!/bin/csh set verbose unlimit f90 -v -omp -source_listing -machine_code \ -o mcc_omp_nodebug_`date +%Y%m%d` \ -fast -O5 -unroll 8 -arch ev6 \ mcc_omp_nodebug.f grep COMPILER: mcc_omp_nodebug.lis

    ------------------------------

    % ./!$ % ./buildit_nodebug.csh unlimit f90 -v -omp -source_listing -machine_code -o mcc_omp_nodebug_`date +%Y%m%d` -fast -O5 -unroll 8 -arch ev6 mcc_omp_nodebug.f /usr/lib/cmplrs/fort90/decfort90 -machine_code -fast -O5 -unroll 8 -arch ev6 -I/usr/lib/cmplrs/hpfrtl -omp -reentrancy threaded -automatic -source_listing -o /tmp/forAAAaaaAfa.o mcc_omp_nodebug.f /usr/bin/cc -v -o mcc_omp_nodebug_20000510 -arch ev6 /usr/lib/cmplrs/fort90/for_main.o -source_listing /tmp/forAAAaaaAfa.o -O4 -pthread -qlshpf -lUfor -lfor -lFutil -lm -lots3 -lots -lm_c32

    /usr/lib/cmplrs/cc/ld -o mcc_omp_nodebug_20000510 -g0 -O4 -call_shared /usr/lib/cmplrs/cc/crt0.o /usr/lib/cmplrs/fort90/for_main.o /tmp/forAAAaaaAfa.o -qlshpf_r -qlshpf -qlUfor_r -lUfor -qlfor_r -lfor -qlFutil_r -lFutil -qlm_r -lm -qlots3_r -lots3 -qlots_r -lots -qlm_c32_r -lm_c32 -lpthread -lexc -lc /usr/lib/cmplrs/cc/ld: 0.01u 0.04s 0:00 4% 0+14k 149+14io 0pf+0w 14stk+2264mem grep COMPILER: mcc_omp_nodebug.lis COMPILER: Compaq Fortran V5.3-915-449BB

    ------------------------------

    % ./mcc_omp_nodebug_20000510 n, offset, ntimes 120000549,0,10 ---------------------------------------------- Double precision appears to have 16 digits of accuracy Assuming 8 bytes per DOUBLE PRECISION word ---------------------------------------------- Array size = 120000549 Offset = 0 The total memory requirement is 2746.59 MB You are running each test 10 times The *best* time for each test is used ---------------------------------------------------- Your clock granularity/precision appears to be 1000 microseconds The tests below will each take a time on the order of 61000 microseconds (= 61 clock ticks) Increase the size of the arrays if this shows that you are not getting at least 20 clock ticks per test. ---------------------------------------------------- WARNING -- The above is only a rough guideline. For best results, please be sure you know the precision of your system timer. ---------------------------------------------------- Function Rate (MB/s) RMS time Min time Max time Copy: 19591.9264 0.0991 0.0980 0.1010 Scale: 19200.0878 0.1012 0.1000 0.1030 Add: 21021.9940 0.1386 0.1370 0.1400 Triad: 20425.6254 0.1421 0.1410 0.1430 Sum of a is = 1.383967266434037E+020 Sum of b is = 2.767934540034517E+019 Sum of c is = 3.690579379856141E+019 % exit % script done on Wed May 10 13:32:53 2000



    This archive was generated by hypermail 2b29 : Mon May 15 2000 - 03:47:57 CDT