
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 24, NO. 2, JULY-DECEMBER 2025 277

PIMsynth: A Unified Compiler Framework for Bit-Serial
Processing-in-Memory Architectures

Deyuan Guo , Member, IEEE, Mohammadhosein Gholamrezaei , Matthew Hofmann,
Ashish Venkat, Member, IEEE, Zhiru Zhang , Fellow, IEEE, and Kevin Skadron , Fellow, IEEE

Abstract—Bit-serial processing-in-memory (PIM) architectures have
been extensively studied, yet a standardized tool for generating efficient
bit-serial code is lacking, hindering fair comparisons. We present a fully
automated compiler framework, PIMsynth, for bit-serial PIM architec-
tures, targeting both digital and analog substrates. The compiler takes
Verilog as input and generates optimized micro-operation code for pro-
grammable bit-serial PIM backends. Our flow integrates logic synthesis,
optimization steps, instruction scheduling, and backend code generation
into a unified toolchain. With the compiler, we provide a bit-serial com-
pilation benchmark suite designed for efficient bit-serial code generation.
To enable correctness and performance validation, we extend an existing
PIM simulator to support compiler-generated micro-op-level workloads.
Preliminary results demonstrate that the compiler generates competitive
bit-serial code within 1.08× and 1.54× of hand-optimized digital and
analog PIM baselines.

Index Terms—Processing in memory (PIM), bit-serial code generation.

I. INTRODUCTION

P ROCESSING-IN-MEMORY (PIM) architectures have been
widely studied as a promising approach to address memory bot-

tlenecks and leverage the high internal parallelism of DRAM. Bit-serial
PIM architectures take advantage of the inherent massive parallelism
of DRAM row operations, attracting considerable interest from both
academia and industry. Analog bit-serial PIM designs, e.g., [1], [2],
[3], [4], [5], often utilize triple-row activation (TRA) to perform ma-
jority (MAJ) logic operations directly within memory arrays with low
area overhead, often referred to as processing-using-DRAM (PUD).
Alternatively, digital PIM designs, e.g., [6], [7], [8], [9], integrate logic
gates near the sense amplifiers to perform bit-serial logic operations,
possibly in combination with PUD.

Programming bit-serial PIM remains challenging due to the com-
plexity of implementing bit-serial code variants for different instruction
sets, data types, register configurations, and hardware constraints. Fig. 1
shows two bit-serial data dependency graphs of a 1-bit full adder as
an example of how to program a digital bit-serial PIM [9] and an
analog bit-serial PIM [4]. Without a compiler toolchain, significant
manual effort is required to map such dependency graphs into the target

Received 26 June 2025; revised 12 August 2025; accepted 17 August 2025.
Date of publication 19 August 2025; date of current version 2 September 2025.
This work was supported in part by the PRISM, in part by the ACE, two of seven
centers in JUMP 2.0, an SRC program sponsored by DARPA, in part by the NSF
under Grant PPoSS-2217071 and Award 2403135, and in part by Booz Allen
Hamilton under Grant FA-8075-18-D-0004. (Corresponding author: Deyuan
Guo.)

Deyuan Guo, Mohammadhosein Gholamrezaei, Ashish Venkat, and Kevin
Skadron are with the University of Virginia, Charlottesville, VA 22904 USA
(e-mail: dg7vp@virginia.edu; uab9qt@virginia.edu; venkat@virginia.edu;
skadron@virginia.edu).

Matthew Hofmann and Zhiru Zhang are with the Cornell University, Ithaca,
NY 14853 USA (e-mail: mrh259@cornell.edu; zhiruz@cornell.edu).

Our code is publicly available at https://github.com/UVA-LavaLab/
PIMsynth.

Digital Object Identifier 10.1109/LCA.2025.3600588

Fig. 1. Bit-serial data dependency graphs of 1-bit full adder: (left) digital
bit-serial PIM; (right) analog bit-serial PIM. Analog PIM requires variable repli-
cation due to the input-destructive behavior of triple-row activation (TRA)-based
majority (MAJ) operations, and it supports multiple outputs. Register allocation
is further needed to utilize PIM hardware resources.

PIM instruction set, considering instruction scheduling, register allo-
cation, spilling, etc. This manual effort is often infeasible or unreliable
when comparing bit-serial PIM architectures, due to the complexities
of bit-serial algorithms and need for different architecture-specific
optimizations.

Previous PIM research has addressed the bit-serial compilation chal-
lenges specific to certain architectures. For example, SIMDRAM [4]
introduced a majority-inverter graph (MIG)-oriented synthesis flow
with row-to-operand allocation algorithms. CHOPPER [10] proposed
a general compiler infrastructure designed for analog bit-serial PIM,
incorporating the Usuba bit-slice compiler [11], LLVM [12] and several
performance optimizations. However, to the best of our knowledge,
these approaches have seen limited adoption, primarily due to being
closed-source, limited generality, or requiring non-trivial manual effort.

To address the challenge, we present a fully automated, end-to-end
bit-serial compilation framework, PIMsynth, targeting both digital and
analog bit-serial PIM architectures, to allow a deep and fair study
of diverse PIM architectures. This framework integrates open-source
logic synthesizers Yosys [13] and ABC [14] to convert bit-parallel
computation into bit-serial, LLVM [12] for instruction scheduling and
register allocation, PIMeval [9] simulator for verification and perfor-
mance energy modeling, with multiple PIM-oriented transformation
and optimization steps and code generation, as a unified compilation
toolchain.

With this compiler framework, we provide a set of carefully
designed Verilog combinational circuit modules as a bit-serial com-
pilation benchmark suite. These modules represent conventional bit-
parallel operations, e.g., arithmetic/Boolean operations on 8/16/32/64-
bit operands, but their circuit structure can strongly influence the per-
formance of the generated bit-serial code. For example, using an arith-
metic ‘+’ operator often produces a wider data dependency graph and
higher register pressure than sequential designs such as a ripple-carry
adder. We therefore construct the suite to minimize dependencies and

1556-6056 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 01,2026 at 18:16:43 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0004-1756-1784
https://orcid.org/0000-0001-5549-2901
https://orcid.org/0000-0002-0778-0308
https://orcid.org/0000-0002-8091-9302
mailto:dg7vp@virginia.edu
mailto:uab9qt@virginia.edu
mailto:venkat@virginia.edu
mailto:skadron@virginia.edu
mailto:mrh259@cornell.edu
mailto:zhiruz@cornell.edu
https://github.com/UVA-LavaLab/PIMsynth
https://github.com/UVA-LavaLab/PIMsynth


278 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 24, NO. 2, JULY-DECEMBER 2025

register usage, enabling high-performance bit-serial code generation
and consistent evaluation.

The key contributions of this work are as follows.
1) A fully automated, end-to-end compilation flow for digital and

analog PIM bit-serial architectures, supporting multiple instruc-
tion sets and register configurations;

2) A transformation and optimization flow to convert a digital
circuit into an analog bit-serial PIM compatible intermediate
representation (IR);

3) A benchmark suite of Verilog modules implementing bit-parallel
operations;

4) An extension in PIMeval simulator to enable digital and ana-
log bit-serial code execution for automated verification and
performance energy modeling.

We evaluate the compiler across two representative digital and analog
PIM architectures to demonstrate that it generates efficient bit-serial
code comparable to handwritten baselines. Furthermore, this bit-serial
compiler framework serves as a foundation for supporting a range
of bit-serial PIM instruction sets, register configurations, and opera-
tions, enabling comprehensive analysis and comparison across diverse
architectures.

II. RELATED WORK

SIMDRAM [4] is an end-to-end framework for analog bit-serial
PIM. In addition to its architectural and system-level contributions,
it introduces a compilation flow that translates logic from AND-OR-
Invert Graph (AOIG) into Majority-Inverter Graph (MIG), applies
MIG-level optimizations, and performs row-to-operand allocation. De-
spite its comprehensive design, the framework has a few limitations:
1) It is closely tied to the SIMDRAM hardware architecture, limiting
generality; 2) AOIG generation is not integrated into the compila-
tion toolchain; and 3) the register allocation strategy lacks generality
and provides limited support for spilling. MIMDRAM [5] is built
on top of SIMDRAM, focusing on mapping high-level programs to
bit-parallel operations in multi-instruction multi-data (MIMD) fashion,
while the underlying bit-serial compilation is solved in the same way as
SIMDRAM.

CHOPPER [10] is a compiler infrastructure proposed for analog
bit-serial PIM architectures. Although it shares a similar high-level
objective and investigates both register spilling and analog PIM specific
optimizations, it has some limitations: 1) It is built on the Usuba bit-slice
compiler [11], inheriting limited logic synthesis capabilities and lacking
full support for converting general bit-parallel logic such as arithmetic
operations into optimized bit-serial sequences. 2) It offers limited
instruction set customization and relies on separate post-processing
to support different architectures. 3) To the best of our knowledge, no
open-source implementation of CHOPPER is publicly available, which
limits reproducibility and hinders comparative evaluation.

PIMLC [15] is a recent bit-serial compiler solution targeting SRAM-
and ReRAM-PIM solutions, integrating a workload-resource aware
scheduling (WRAS) algorithm to minimize latency. However, it does
not support DRAM-based PIM architectures, which have distinct
computing models, input-destructive analog operations, and digital
registers.

III. COMPILER DESIGN

A. Bit-Serial PIM Programming Models

To support a range of PIM architectures, we define two bit-serial
programming models for digital PIM and analog PIM respectively, as
illustrated in Fig. 2. Both models assume a vertical data layout and

Fig. 2. Bit-serial PIM programming models: (left) digital; (right) analog. Both
models assume a vertical data layout within DRAM subarrays. Digital PIM
attaches a bit-serial logic unit (LU) to each sense amplifier, while analog PIM
introduces triple-row activation (TRA)-based majority (MAJ) capability, with
dual-contact cell (DCC) rows to perform NOT operations.

Fig. 3. PIMsynth bit-serial compiler main flow: A unified compilation frame-
work that supports diverse digital and analog bit-serial PIM architectures.

enable bit-serial SIMD computation within DRAM subarrays, but they
differ in how computation is implemented and how operations are
executed. Digital bit-serial PIM, e.g. [7], [9], introduces lightweight
digital bit-serial logic units (LUs) attached to sense amplifiers, which
can perform bit-serial operations on a small set of single-bit registers.
Computation proceeds by reading memory rows into sense amplifiers,
possibly copying values to registers, and executing bit-serial operations
on the registers. A bit-serial logic operation is 10− 20× faster than
a memory row read or write operation on DRAM, as described in
Section IV-A. Analog bit-serial PIM, such as [4], performs computation
directly in memory based on the triple-row activation (TRA) mecha-
nism, which allows in-place majority logic. AND and OR operations
are implemented using MAJ with constant zero and one inputs. We
currently assume that all TRA-enabled rows are also dual-contact cell
(DCC) rows for NOT operations. Computation proceeds by reading
data from regular memory rows to a small group of TRA/DCC-enabled
register rows, executing bit-serial operations, and writing results back
to regular memory rows.

B. Bit-Serial Compiler Main Flow

The main flow of the bit-serial compiler is shown in Fig. 3. The
compiler takes three inputs: 1) Verilog description of bit-parallel com-
putation, 2) bit-serial PIM instruction set (ISA) defined as a standard
cell library, and 3) the number of registers in the target PIM architecture.
The compiler then performs logic synthesis, optimization, scheduling,
code generation, and simulation phases in a unified framework. If a
new bit-serial PIM architecture follows either the digital or analog
programming model and differs only in its ISA or register config-
urations, the compiler can already support it without modification,
given the proper inputs. There are other PIM architectures beyond

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 01,2026 at 18:16:43 UTC from IEEE Xplore.  Restrictions apply. 



IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 24, NO. 2, JULY-DECEMBER 2025 279

Fig. 4. Transformation and optimization steps to convert a digital circuit into analog PIM IR, by leveraging the input-destructive behavior of triple-row activation
(TRA), dual-contact cell (DCC)-based NOT, and multi-output activate-activate-precharge (AAP) operations.

these two, e.g., with different analog instruction sets [8] or mixed
analog-digital solutions [6]. Extending support to a broader range of
PIM architectures, such as [2], [3], [6], [8], [16], [17], is left for future
work.

1) Logic Synthesis Phase: The bit-serial compiler framework
integrates Yosys and ABC synthesizers to convert bit-parallel com-
putation Verilog into digital circuit netlists in BLIF. Verilog provides
flexible ways of describing the structures of bit-parallel computation
and serves as standard input to logic synthesizers. Digital circuits can be
naturally interpreted as bit-serial data dependency graphs for the next
phase of compilation. Using Verilog helps with low-level mapping,
but adding support for high-level programming languages is a natural
direction for future work. Another compiler input is the bit-serial PIM
ISA definition. The PIM ISA is converted to a standard cell library
in GenLib format, used by Yosys and ABC to perform technology
mapping from a general digital circuit into a circuit using specific logic
gates or operations supported by the target architecture.

2) Transformation & Optimization for Digital/Analog PIM:
During this phase, the compiler converts the output of logic synthesis,
i.e., digital circuits, into bit-serial PIM IR-1 (bit-serial data dependency
graph) for scheduling considering key characteristics of digital and
analog bit-serial PIM. The purpose of these transformation steps is to
convert digital circuits into PIM operations, particularly for analog PIM.

Based on the digital bit-serial PIM programming model, digital
bit-serial logical operations are performed on a small set of single-bit
registers within each bit-serial LU, which can be directly mapped to
logic gates in the digital circuits generated by the logic synthesis phase.
However, analog bit-serial PIM is more complicated due to its unique
characteristics and requirements: 1) Because of the input-destructive
behavior of TRA, input variables will be updated after performing an
analog MAJ operation, and this further creates the requirements of
protecting global input variables and preventing using the same variable
to drive more than one input-destructive operations. 2) Analog PIM has
DCC capability, which embeds NOT operations as part of TRA. 3) The
analog PIM AAP primitive supports more than one output variable for
efficient one-to-multi copying.

To meet the above requirements and fully exploit the computational
potential of analog bit-serial PIM, we design a multi-step flow that
transforms and optimizes a digital circuit with NOT/MAJ/AND/OR
gates into an analog PIM compatible bit-serial IR, more comprehensive
than prior work [4], [10], as shown in Fig. 4. Step ➊ is for replicating
global inputs to avoid impact from analog TRA operations. Step ➋ is
for mapping AND and OR gates into MAJ with additional zero and one
inputs. Step ➌ is to eliminate inverters in the circuit by negating the
inputs of MAJ and taking advantage of DCC. Step ➍, ➎, ➏ are three
alternative approaches to resolve the input-destructive requirements of
analog PIM, by leveraging the inout inputs and multi-outputs of TRA,
or insert a copy as a final measure.

TABLE I
BIT-SERIAL PIM TIMING PARAMETERS

3) Scheduling Phase: We integrate LLVM [12] to perform in-
struction scheduling, register allocation, and spilling. This phase lowers
bit-serial PIM IR-1 (before register allocation and spill insertion) to
IR-2 with register allocation and spill insertion. For both digital and
analog bit-serial PIM, a spilled register causes an additional pair of
memory row read and write, which can impact bit-serial execution
time substantially. We implement bit-serial-friendly Verilog inputs and
perform priority-aware topological sort before scheduling to relieve
register pressure, and we leave the exploration of optimal scheduling
algorithms for future work.

4) Bit-Serial Code Generation Phase: The compiler translates
bit-serial PIM IR-2 into executable bit-serial code. To facilitate result
verification, we extend the PIMeval simulator to support bit-serial PIM
primitives. Code generation is based on a set of PIMeval APIs for
memory row read and write, digital PIM logical operations, analog
PIM AP/AAP operations, and DCC row access. It is extensible to
support other formats, including bitwise C code for bit-serial PIM IR
verification.

5) Simulation & Verification Phase: Given the complexities of
generated bit-serial code for digital and analog PIM, verification is
essential. After compilation, the framework generates test functions and
test inputs for the generated bit-serial code, and perform micro-op-level
simulation using PIMeval.

IV. EVALUATION

A. Bit-Serial PIM Timing Parameters

Timing parameters for performance evaluation are derived from a
DDR4_8Gb_x16_3200 model listed in Table I.

B. Bit-Serial Compilation Benchmark Suite

The PIMsynth benchmark suite consists of Verilog implementations
of 8/16/32/64-bit integer arithmetic, relational and logical operations,
min/max, shift, and population count, for evaluating compiler efficiency
in mapping bit-parallel operations to bit-serial ISAs. The compiler
and suite are designed to be readily extensible, e.g. to more complex

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 01,2026 at 18:16:43 UTC from IEEE Xplore.  Restrictions apply. 



280 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 24, NO. 2, JULY-DECEMBER 2025

Fig. 5. Comparison of digital and analog bit-serial PIM execution time be-
tween human expert-written baseline and compiler generated code.

operations such as floating-point arithmetic and look-up table (LUT)
based logic.

C. Comparison Against Manually Optimized Baseline

We evaluate a subset of benchmarks selected based on baseline
availability and types of operations. Baselines are highly compact
bit-serial code optimized by human experts over months of effort,
while the compiler generates results in seconds or minutes. Digital
bit-serial PIM baseline results are obtained from [9], using an ISA
of NOT/AND/XNOR/SEL, with 4 single-bit registers. Analog bit-
serial PIM baseline results are collected from [4], [5], which models
TRA/DCC operations using AP/AAP primitives in 6 register rows.

Fig. 5 shows the comparison between bit-serial compiler-generated
code and manually optimized baseline. For digital PIM, the results are
strong, with performance comparable to or better than the manually op-
timized baseline, and a geometric mean of 1.08×. For analog PIM, the
compiler-generated code remains competitive, with a geometric mean
within 1.54× of the baseline. We observe compilation inefficiencies in
analog operations such as add_int8 and max_int8, due to difficulties in
exploiting the analog MAJ operation as efficiently as human experts.
Despite these inefficiencies, the overall results demonstrate the effec-
tiveness of the bit-serial compiler, providing significant reduction in
manual effort.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a bit-serial compiler framework for digital and
analog bit-serial PIM code generation. This achieves performance
within 1.08× and 1.54× of hand-optimized baselines, while elimi-
nating manual programming effort. Future work will explore improved
synthesis and scheduling algorithms and extend support to a wider range
of bit-serial targets, and compare to related compiler approaches.

REFERENCES

[1] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise oper-
ations using commodity DRAM technology,” in Proc. Annu. IEEE/ACM
Int. Symp. Microarchitecture, 2017, pp. 273–287.

[2] F. Gao et al., “ComputeDRAM: In-memory compute using off-the-shelf
DRAMs,” in Proc. Annu. IEEE/ACM Int. Symp. Microarchitecture, 2019,
pp. 100–113.

[3] X. Xin et al., “ELP2IM: Efficient and low power bitwise operation pro-
cessing in DRAM,” in Proc. IEEE Int. Symp. High Perform. Comput.
Architecture, 2020, pp. 303–314.

[4] N. Hajinazar et al., “SIMDRAM: A framework for bit-serial SIMD pro-
cessing using DRAM,” in Proc. ACM Int. Conf. Architectural Support
Programm. Lang. Operating Syst., 2021, pp. 329–345.

[5] G. F. Oliveira et al., “MIMDRAM: An end-to-end processing-using-
DRAM system for high-throughput, energy-efficient and programmer-
transparent multiple-instruction multiple-data computing,” in Proc. IEEE
Int. Symp. High Perform. Comput. Architecture, 2024, pp. 186–203.

[6] S. Li et al., “DRISA: A DRAM-based reconfigurable in-situ acceler-
ator,” in Proc. Annu. IEEE/ACM Int. Symp. Microarchitecture, 2017,
pp. 288–301.

[7] T. Finkbeiner, G. Hush, T. Larsen, P. Lea, J. Leidel, and T. Manning,
“In-memory intelligence,” IEEE Micro, vol. 37, no. 4, pp. 30–38, 2017.

[8] R. Zhou et al., “FlexiDRAM: A flexible in-DRAM framework to enable
parallel general-purpose computation,” in Proc. ACM/IEEE Int. Symp. Low
Power Electron. Des., 2022, Art. no. 7.

[9] F. A. Siddique et al., “Architectural modeling and benchmarking for digital
DRAM PIM,” in Proc. IEEE Int. Symp. Workload Characterization, 2024,
pp. 247–261.

[10] X. Peng et al., “CHOPPER: A compiler infrastructure for programmable
bit-serial SIMD processing using memory in DRAM,” in Proc. IEEE Int.
Symp. High Perform. Comput. Architecture, 2023, pp. 1275–1288.

[11] S. Belaıd et al., “Tornado: Automatic generation of probing-secure masked
bitsliced implementations,” in Proc. Int. Conf. Theory Appl. Cryptographic
Techn., 2020, pp. 311–341.

[12] C. Lattner et al., “LLVM: A compilation framework for lifelong program
analysis & transformation,” in Proc. Int. Symp. Code Gener. Optim., 2004,
pp. 75–86.

[13] C. Wolf, “Yosys open synthesis suite,” 2016.
[14] R. Brayton et al., “ABC: An academic industrial-strength verification tool,”

in Proc. 22nd Int. Conf. Comput. Aided Verification, Jul. 2010, pp. 24–40.
[15] C. Tang et al., “PIMLC: Logic compiler for bit-serial based PIM,” in Proc.

Des. Automat. Test Europe Conf. Exhib., 2024, pp. 1–6.
[16] S. R. S. Raman et al., “Sachi: A stationarity-aware, all-digital, near-

memory, Ising architecture,” in Proc. IEEE Int. Symp. High Perform.
Comput. Architecture, 2024, pp. 719–731.

[17] S. R. S. Raman et al., “SPARK: Sparsity aware, low area, energy-efficient,
near-memory architecture for accelerating linear programming problems,”
in Proc. IEEE Int. Symp. High Perform. Comput. Architecture, 2025,
pp. 99–112.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 01,2026 at 18:16:43 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


