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Modern web browsers manage millions of dynamic objects across tabs, frames, DOM elements, and JavaScript

contexts. However, fine-grained behaviors related to object allocation, lifetime, and memory usage in produc-

tion browsers remain elusive. Chromium’s modular and extensible design, use of specialized memory allocators,

and sensitivity to instrumentation overhead further complicate precise object tracking. To this end, we develop

a lightweight, thread-safe, and non-intrusive profiling framework. Using this infrastructure, we present an

empirical characterization of Chromium’s memory object behavior across twelve diverse, user-centric work-

loads. We examine object lifetime events, size diversity, spatial locality, type diversity, and memory activity,

and reflect on their broader software and architectural implications. Our study offers a systems-oriented view

into Chromium’s architecture and memory behavior, and highlights structural challenges in efficient memory

management in large-scale and diverse systems.
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1 Introduction
The open-source Chromiumweb browser project [23] has been widely adopted due to its modularity,

flexibility, extensibility, and performance-oriented nature. Its multi-process architecture integrates

rendering engines, graphics libraries, JavaScript runtimes, state-of-the-art memory allocators and

garbage collectors, and sandboxing technologies. It has been the bedrock of several modern browsers

such as Google Chrome, Microsoft Edge, Amazon Silk, and DuckDuckGo, and forms the core of

several desktop application frameworks such as Electron, used in popular applications such as

Slack and Visual Studio Code Editor. It is also used in security-conscious virtualized environments

such as Citrix Workspace [3] for secure web rendering. Owing to its wide deployment, even

minor inefficiencies could have a major impact on the user’s browsing experience, cloud resource

utilization, and memory pressure.

Conventional performance characterization, profiling, and optimization strategies typically em-

ploy a code-centric perspective, following Amdahl’s law [12–14, 25, 30], which involves identifying

and analyzing hot code regions and functions of interest to identify computational bottlenecks and

avenues for performance optimization. Data-centric strategies typically involve memory profiling

to examine potential memory leaks, fragmentation, and corruption. However, these techniques are

largely coarse-grained and scale poorly to large object-oriented codebases such as Chromium that
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combine several complex performance-critical software components such as rendering engines,

custom memory allocators, garbage collectors, and modules featuring event-driven computation

that span several object lifetimes and contexts.

In contrast to code-centric characterization, this work shifts the lens to an object-centric per-
spective, focusing on how dynamic C++ objects are allocated, accessed, and destroyed across the

browser’s subsystems, rather than keeping focus on identifying hot and tight loops for performance

optimization, thereby uncovering patterns and inefficiencies that remain hidden in aggregate code-

centric views. In particular, we perform a large-scale, albeit low-cost instrumentation of Chromium

with the goal of analyzing object lifetime behavior, access patterns, placement in hardware caches

and memory pages, deallocation (e.g., graceful destruction vs. reclamation through garbage col-

lection) and reallocation patterns, and interaction with microarchitectural structures such as the

branch predictor and execution units, allowing us to draw insights and make recommendations to

software developers and architects to improve the performance potential of Chromium.

This work introduces a lightweight, thread-safe, and source-agnostic profiling framework
based on compile-time instrumentation. Our tool tracks object allocations, access frequency, and

lifetimes without requiring modifications to the Chromium source code. By mapping object be-

havior across multiple browser subsystems, we provide fine-grained visibility into how different

components contribute to memory pressure, latency, and performance anomalies.

While developers can modify source code with custom counters or debug logic, conducting a

characterization effort at this scale demands significant time, effort, and resources. In contrast, this

work offers a highly portable tool that performs all instrumentation automatically at the LLVM IR

level at a low overhead, without the need for source modifications. Our approach applies to any

C/C++ codebase compiled with LLVM that employs object-oriented allocation patterns. We select

Chromium as the vehicle for this exploration due to its scale, architectural complexity spanning

renderer, GPU, network, and storage subsystems, and its multi-process design with diverse memory

management strategies (discussed in Section-2).

This methodology generalizes beyond browsers. Game engines such as Unreal Engine, database

systems like ClickHouse[46] and RocksDB[18], and multimedia frameworks like FFmpeg[19] share

similar characteristics: modular C++ architectures, custom allocators, and complex object lifecycles.

Insights derived from Chromium can transfer directly to these domains. However, instrumentation

of a codebase at Chromium’s scale entails significant challenges.

First, low-overhead profiling without source modifications requires precise integration to avoid

disrupting normal execution. Our framework uses compile-time instrumentation with inline as-

sembly blocks inserted into target control paths where lightweight hooks invoke the RDTSC

instruction for high-resolution timestamping at minimal cost. Second, Chromium employs custom

memory allocators (Section 2.5), rendering standard library allocation hooks at the OS level inac-

curate. We implement per-module allocation tracking by targeting specific atomic system calls

that Chromium’s allocators use to get accurate event logs and avoid interfering with its memory

management. Third, multithreaded timing is complicated by core migrations, context switches,

and unsynchronized clocks. We address this with per-thread timing blocks that use frequency-

invariant and core-synchronized timestamp counters. Fourth, overhead is critical; components like

networking and IPC are latency sensitive, and delays from instrumentation can cause timeouts.

Excessive heap use or interference with reserved memory pools can crash Chromium. Our design

limits logging-related allocations to 16 bytes per event to minimize heap usage. Traditional logging

incurs high overhead from libc I/O and synchronization. Instead, we generate compile-time identity

tags, use static buffers, and flush logs via minimal inline assembly blocks that invoke relatively

low-overhead system calls, bypassing standard libraries entirely. Our profiling and instrumentation

infrastructure is generic and can target any object-oriented application that can be compiled with
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the LLVM/Clang compiler – ideal targets include browsers, graphics libraries, media players, and

web servers. In this work, we leverage Chromium as a demonstration vehicle.

There are several important implications of an object-centric characterization. First, precisely

tracking object lifetime behavior, allocation, deallocation, and reallocation patterns could help better

tailor memory management strategies. We find that the number, types, and sizes of objects that are

ephemeral or persistent, and their destruction and reclamation patterns could vary across different

execution flows, providing hints and heuristics to guide better memory management, garbage

collection, and lifetime refactoring strategies. Second, it could help identify zombie objects (those
that will no longer be accessed, and yet aren’t reclaimed into the memory pool). This could not only

help improve the efficiency of the garbage collector, but could also allow for targeted placement of

deallocation hooks and automatic migration to safer and efficient C++ constructs such as smart

pointers. Third, by analyzing the composition of memory pages by object lifetime categories (e.g.,

persistent, ephemeral but frequently reallocated, zombie, gracefully destroyed), valuable insights

could be gained regarding potential fragmentation patterns and allocator inefficiencies. Fourth,

identifying object access patterns and placement in hardware caches and memory pages could

uncover memory hotspots and bottlenecks (e.g., false sharing) and enable the deployment of tailored

optimizations such as cache conflict-averse placement and profile-guided prefetching.

In summary, we make the following major contributions:

• A systems-oriented tutorial on Chromium’s architecture and memory behavior. We

provide a concise, structured overview of Chromium’s key components and their interaction

with memory allocation subsystems, offering valuable context for researchers studying

large-scale, multi-threaded applications.

• A scalable, low-overhead instrumentation framework for object-centric charac-
terization. Our lightweight, thread-safe infrastructure enables detailed tracking of object

allocations, deallocations, memory reuse, and access patterns across Chromium’s complex

runtime without requiring source code modifications.

• A detailed characterization of object allocation, deallocation, and reallocation dy-
namics.We quantify allocation intensity, highlight hotspots across browser subsystems, and

uncover patterns of allocation churn and reuse not captured by conventional profilers.

• An in-depth analysis of object lifetime distributions, spatial placement, and locality.
Our study reveals midlife and persistent object classes, memory pollution from zombie objects,

and cache-level compaction behaviors that shape memory efficiency in Chromium.

• Identification of object types and memory behaviors critical to performance. We

surface dominant object classes by frequency, longevity, and memory footprint, whose man-

agement disproportionately impacts memory retention and allocator efficiency. In addition,

we also study the architectural impact of object layout and choice of data structures.

• Recommendations for runtime and allocator-level optimizations. Based on our find-

ings, we outline directions for improving garbage collection heuristics, lifetime-awarememory

placement, and mechanisms for mitigating memory fragmentation.

2 Chromium Browser Architecture
In this section, we provide requisite background on the Chromium architecture, describing its

software organization, salient components and features, and their interactions, in addition to a

brief overview of its memory management and garbage collection utilities.

One of the key defining features of Chromium is that it adopts a modular and a multi-threaded

architecture, where each major subsystem is encapsulated within its own process or module for

improved security and performance isolation and scalability. At startup, Chromium launches two
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primary processes: (a) the browser process, responsible for coordinating core browser functionality,

and (b) the initial renderer process, which hosts the Blink rendering engine and the V8 JavaScript
engine.

As users open new tabs, Chromium dynamically spawns additional renderer processes. Further-

more, browser extensions, plugins, and standalone applications may also execute within dedicated

processes, contributing to the overall process diversity.

2.1 Elements of a webpage
Figure-1 illustrates Chromium’s modular architecture in relation to the tasks involved in

loading a webpage. A webpage in Chromium is composed of several fundamental abstractions:

Fig. 1. Page loading overview in Chromium

page, frame, Document Object Model (DOM)
window, and document. A page encapsulates

the logical concept of a browser tab. While

each renderer process may handle multiple

pages, a page typically maps to a single tab

from the user’s perspective. A frame models

the hierarchical structure of a web page, in-

cluding both the main frame and any nested

iframe elements. Each page may contain multi-

ple frames arranged in a tree-like fashion. Each

frame owns a singleDOMWindow, which corre-
sponds to the global window object in JavaScript
and provides the execution environment for

scripts. The Document object, accessible via

window.document, contains the parsed HTML

content and serves as the root of the DOM

tree for the frame’s content. Further, to unify

execution across different threading models,

Chromium introduces the execution context ab-
straction. An execution context represents ei-

ther a Document (for main-thread execution) or

a WorkerGlobalScope (for worker-thread exe-

cution), enabling a consistent interface for script execution, resource access, and event handling

regardless of the underlying context.

2.2 Blink Rendering Engine
Blink, Chromium’s rendering engine, is responsible for DOM construction, style and layout compu-

tation, JavaScript execution, and integration with the Chrome compositor. [2]

Rendering Pipeline. Parsing begins with HTML, generating the DOM tree, a structured represen-

tation of the page and the primary interface for JavaScript. The V8 engine accesses the DOM through

bindings, thin wrappers that expose C++ structures to JavaScript. A document can include multiple

DOM trees. Next, CSS rules are matched against DOM nodes to compute styles. The engine then

constructs a parallel Layout Tree, whose nodes calculate positional geometry using element-specific

layout algorithms. During the Paint phase, layout objects emit display items: commands like “draw

rectangle” or “render text.” Multiple display items may represent different visual layers of the

same element. Display items are converted into pixel data in the Rasterization phase using the

Skia [15] graphics library. Rasterization produces a bitmap by issuing hardware-abstracted draw
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calls, including Bézier paths and vector shapes. Finally, raster commands are bundled into a GPU
command buffer, transmitted over IPC, and executed by the GPU to render pixels onscreen.

Threads and Memory. Blink runs in sandboxed renderer processes, each with a dedicated main

thread and optional worker/internal threads. The main thread handles JavaScript, DOM, style, and

layout, making Blink mostly single-threaded. Chromium’s site isolation model enforces separate

renderer processes for distinct sites. For example, an isolate specific origin policy could be specified

such that mail.google.com and photos.google.com appear to share a site, but flights.google.com does

not. Memory is managed using a hybrid model that comprises of: (a) Oilpan, a garbage collector-
based heap allocator, used for most object lifetimes, and (b) PartitionAlloc, a manual allocator, used

for performance-critical objects or objects with simpler lifetimes. We discuss this in greater detail

in Section 2.5.

Task Scheduling. The Blink Scheduler manages task queues on the main thread to optimize system

responsiveness [16]. Figure 2 illustrates the scheduler architecture. Tasks are assigned semantic

labels (e.g., input, rendering) for context-aware prioritization. APIs abstract threading complexities,

allowing developers to schedule tasks based on behavior rather than platform-specific details.

In Blink, tasks are defined as base::OnceClosure objects, posted via TaskRunner::PostTask or

TaskRunner:: PostDelayedTask. Blink avoids general closure methods, usingWTF::Bind for same-

thread tasks and CrossThreadBind for cross-thread tasks. Once posted, tasks run atomically until

completion. Task runners link tasks to execution contexts. FrameScheduler::GetTaskRunner ties
tasks to specific frames, enabling the scheduler to prioritize or freeze tasks based on frame state.

Specialized task runners manage tasks like garbage collection and compositing, each tied to specific

threads. Tasks are categorized by blink::TaskType, which determines scheduling priority. Input

tasks receive the highest priority, followed by compositor tasks when user gestures are detected.

Other tasks are deferred or throttled to maintain responsiveness and conserve power. The scheduler

also pauses tasks during synchronous dialogs or debugger breakpoints. Tasks that do not require

the main thread are offloaded using worker_pool::PostTask, utilizing a thread pool. Tasks needing

sequential execution should use worker_pool::CreateTaskRunner to ensure ordering, avoiding the

overhead of dedicated threads. Efficient task scheduling directly influences memory behavior, such

as garbage collector pauses, object allocation timing, and interactions with rendering subsystems.

Fig. 2. Overview of Blink task scheduler

2.3 V8 JavaScript Engine
V8 is Google’s high-performance JavaScript

and WebAssembly engine implemented in C++.

Its execution pipeline includes both interpreta-

tion and just-in-time (JIT) compilation for op-

timized performance. The compilation process

begins with a custom parser that constructs an

abstract syntax tree (AST). This AST is then

converted into V8 bytecode by Ignition, V8’s

interpreter. Subsequently, TurboFan, the opti-

mizing compiler, compiles the bytecode into

machine code for execution. V8’s compilation infrastructure, previously referred to as Crankshaft,

consists of four core components. First, thebase compiler generates machine code quickly with min-

imal optimization, enabling fast startup. Second, the runtime profiler identifies frequently executed

hot code paths during program execution. Third, the optimizing compiler (TurboFan) recompiles hot

code with optimizations, with type feedback gathered during execution guiding the optimizations.

Finally, de-optimization supports speculative optimization by allowing fallback to baseline code
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when assumptions made during compilation are invalidated at runtime. V8 dynamically optimizes

and re-optimizes code based on runtime behavior, enabling adaptive performance tuning that

balances execution speed with resource usage.

2.4 Component Interaction
Chromium follows a multi-process architecture for isolation and fault tolerance, separating browser

and renderer processes. The browser process handles UI, system integration, and process control;

each renderer process manages web content. Each renderer maintains a global RenderProcess object

to store per-process state and facilitates communication with the browser. On the browser side, a

matching RenderProcessHostmanages the renderer and serves as its IPC endpoint. Communication

occurs over Mojo, Chromium’s IPC framework, which offers cross-platform communication, an

Interface Description Language (IDL), and code-generated bindings. Within a renderer, each web

document maps to a RenderFrame, paired with a RenderFrameHost in the browser. RenderFrame

encapsulates document state and interacts with Blink; RenderFrameHost controls its lifecycle and

coordination. Frames are identified via routing IDs, unique within each renderer; globally unique

frame IDs combine the routing ID and RenderProcessHost. Visual content (e.g., images, input

regions) is managed by RenderWidget objects, paired with RenderWidgetHost in the browser. These

hosts coordinate rendering and input delivery. Finally, Mojo (or legacy IPC) channels are monitored

for failures. If a renderer crashes (e.g., via handle state), Chromium notifies affected tabs, replaces

the view with a placeholder, and spawns a new renderer upon reload.

2.5 Memory Management

Fig. 3. Distribution of code across different program-
ming languages within the Chromium project.

Chromium employs a hybrid memory manage-

ment approach combining a custom allocator,

PartitionAlloc, with tracing garbage collectors

for higher-level subsystems (Blink and V8).

PartitionAlloc: Chromium’s Primary Al-
locator. PartitionAlloc is Chromium’s default

memory allocator, replacing standard alloca-

tion functions via a unified shim that intercepts malloc(), free(), new, and delete. It is optimized

to reduce fragmentation, isolate performance across subsystems, and enable memory safety features

such as pointer tagging and address pool partitioning. Note that, at the lowest level, all allocators

ultimately use malloc/new and related primitives, as the Chromium codebase is predominantly

C/C++ (Figure 3).

Memory is reserved in 2MiB-aligned super pages, subdivided into fixed-size partition pages, which
are further divided into one or more slot spans made up of fixed-size slots. Allocation requests are

bucketed by size, and each bucket tracks active, empty, and decommitted slot spans. The fast path

allocates via freelist pointers embedded in slots; new pages are provisioned on demand, deferring

physical memory commitment until required.

Renderer processes leverage dedicated partitions to improve cache locality and security. The

LayoutObject partition is optimized for rendering data structures, Buffer stores script-exposed
containers like Vector and String, ArrayBuffer is dedicated to backing JS ArrayBuffer memory,

and FastMalloc is a general-purpose fallback allocator.

Garbage Collection. Chromium employs two major garbage collection (GC) techniques. Blink

uses Oilpan (C++), while JavaScript memory is managed by V8’s generational GC. Oilpan uses

a mark-and-sweep collector with optional compaction. Heap pointers are wrapped in GC-aware

smart types (Member, Persistent, etc.). It supports two GC styles: (a) conservative that scans native
stacks to find potential pointers, and (b)precise that runs at known safe points (e.g., event loop
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boundaries). It also supports three execution modes: (a) atomic that forces all execution to be

stopped while garbage collection is in progress, (b) incremental that interleaves execution with the

mutator via write barriers, and (c) concurrent that runs marking on background threads. During

marking, reachable objects are traced from root sets; in sweeping, destructors run and memory is

reclaimed. Pre-finalizers allow inter-object cleanup before destructor execution, which occurs on

the allocating thread to preserve C++ semantics. It also supports weak references, although they

may be elided if both referent and holder are collected in the same cycle.

V8, on the other hand, uses a generational, incremental mark-and-sweep collector optimized

for ephemeral objects. The heap is split into (a) young generation that is collected frequently via

minor GCs, and (b)old generation that is collected less often via major GCs and contains long-lived

objects. Objects typically start in “Eden”, a space where all newly allocated objects begin their

life in the young generation, and may be promoted after surviving cycles. Both spaces support

incremental and concurrent collection to minimize pause times. Relocation reduces fragmentation

but incurs pointer update overhead. As the old generation grows, promotion cost and GC latency

may increase, affecting responsiveness.

3 Object-Centric Instrumentation
In this section, we discuss the design of our instrumentationmethodology, outlining themechanisms

used to capture object life-cycle events with minimal runtime overhead and high semantic fidelity.

3.1 Instrumentation Pipeline
Our pipeline consists of three phases: instrumentation, execution, and analysis. In the first phase,

we compile Chromium with lightweight hooks to trace allocation, constructor, destructor, and
deallocation events using our LLVM [35]. We simultaneously extract static metadata such as

type layouts and symbol tables for annotating runtime events. In the second phase, we run the

instrumented binary on representative workloads. This produces detailed logs capturing object life

cycle events, types, and source locations. We also collect hardware-level data using Intel VTune,

including retired loads/stores, data addresses, and cache hit/miss statistics. The third phase analyzes

these logs. We correlate dynamic events with static metadata to infer object lifetimes, resolve type

boundaries, and eliminate redundant records. The resulting trace captures allocation/deallocation

patterns, object placement at page and cache levels, and fine-grained access behavior.

Instrumentation generates four raw data streams per component: allocations, dealloca-

tions, constructor calls, and destructor calls. We identify objects by matching constructor

invocations to preceding allocation events, i.e., constructor address falls within the allocated

region and occurs after the allocation. We resolve object types using a compile-time type_map

Fig. 4. Classification of object states.

that links runtime allocations to known types. For each object,

we retrieve its type and use the corresponding size to infer

boundaries. An object is considered valid if its boundary lies

within the allocated region. Resolved objects are added to the

final analysis set.

3.2 Object Lifetime Taxonomy
We next present a taxonomy we use in our object lifetime anal-

ysis. Recall that an object’s lifetime begins with the process

of memory allocation, followed by instantiation that occurs

explicitly through a constructor call. Memory is typically allo-

cated from a free pool of memory. Objects once created enter

the live state, which implies that they might be referenced in
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Algorithm 1 Estimate Object Lifetimes

Require: Sorted Objects, Destructors
1: alive_addrs← {}
2: for all𝑂 ∈ Objects do
3: 𝑂.death←∞;𝑂.alive←∞
4: 𝑂.reuse←∞;𝑂.cod← P
5: 𝑎𝑑𝑑𝑟 ← 𝑂.addr; 𝑡𝑏 ← 𝑂.ctor_ts
6: if 𝑎𝑑𝑑𝑟 ∈ alive_addrs then
7: 𝑂.alive← 𝑡𝑏 − alive_addrs[𝑎𝑑𝑑𝑟 ]
8: 𝑂.death← 𝑂.reuse← 𝑡𝑏
9: 𝑂.cod← R
10: else
11: alive_addrs[𝑎𝑑𝑑𝑟 ] ← 𝑡𝑏
12: end if
13: for all 𝐷 ∈ Destructors do
14: if 𝐷.addr = 𝑎𝑑𝑑𝑟 ∧𝐷.cycle > 𝑡𝑏∧

𝐷.ts < 𝑂.reuse then
15: 𝑡𝑑 ← max(𝐷.cycle)
16: 𝑂.death← 𝑡𝑑
17: 𝑂.alive← 𝑡𝑑 − 𝑡𝑏
18: 𝑂.cod← D
19: end if
20: end for
21: end for

the future. We refer to the objects that are actively being referenced in any given execution interval

as in-use objects. The lifetime of an object ends upon destruction. This typically happens through

an explicit destructor call (graceful destruction) or via garbage collection. However, several objects

may persist or remain live throughout execution as their contexts and access patterns span several

different modules. If a live object has not been used for a long time, but has not been explicitly

destroyed, it could have entered a zombie state, which means that the object might no longer be

referenced. Objects may stay in the zombie state for a long time until they get picked up by the

garbage collector. In many instances, they might never be marked for garbage collection, artificially

inflating the memory consumed. Memory reclaimed via garbage collection might be reallocated

at a later point of time, followed by a constructor call, signifying the birth of a new object. It is

important to distinguish between a live object that was instantiated after a first-time allocation vs.

a reallocation to assess the effectiveness of the underlying memory allocation and management

scheme in limiting memory fragmentation. Figure 4 shows the object lifetime state transitions

described above.

Algorithm 1 estimates object lifetimes by tracking address reuse events and explicit

destructor calls, inferring the time interval between object allocation and its eventual disposal.

Fig. 5. Overhead of object tracking instrumentation,
measured using the WebKit Speedometer suite.

The algorithm operates on a sorted list of ob-

jects and a list of destructor events. For each

object, the algorithm initializes its lifetime pa-

rameters, including the death time, duration of

liveness, and reuse cycle. If the object’s address

has been reused, the algorithm updates the ob-

ject’s lifespan based on the difference between

its current and previous allocation times. If a

destructor call for the object is found, the death

time is updated to the destructor’s timestamp,

and the liveness duration is recalculated. The

object’s status is marked as either reused (‘R’)

or destroyed (‘D’) based on the presence of a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 10, No. 1, Article 20. Publication date: March 2026.



Shiny Objects: Object-Centric Characterization of Chromium 20:9

reuse event or destructor call. In the absence of a corresponding reuse event or destructor call,

an object is marked as persistent (‘P’). Post-memory access mapping using VTune, if a persistent

object exhibits no load or store activity, it is further classified as a zombie (‘Z’).

3.3 Instrumentation Overhead
Our instrumentation framework introduces minimal performance overhead. The inserted hooks,

state checkers, and supporting logic incur a only 1.1× runtime overhead relative to the baseline.

Enabling object data logging increases this overhead to an average of 1.9×. Figure 5 presents the
runtime performance impact, as measured using the WebKit Speedometer benchmark suite [17],

comparing a baseline Chromium build (‘Vanilla’) with two instrumented variants: one with logging

disabled (‘Instrumented (w/o logging)’) and another with logging enabled (‘Instrumented (logging)’).

In terms of binary size, the average size of shared object files increases from 526,274.24 bytes in

the baseline to 578,230.46 bytes in the instrumented build, an increase of approximately 9.8%. This

moderate code size overhead stems from the inclusion of logging metadata and support routines,

and remains acceptable within Chromium’s modular build architecture. Compile-time overhead is

similarly negligible. Using 8-thread parallel builds with gn and ninja on a system with an Intel

i9-13900KS and 64 GB of memory, instrumentation extends total build time from ≈12,262 to ≈12,534
seconds (+2.2%).
To assess the feasibility of tracking dynamic object allocations in Chromium, we used Microsoft’s

Sysinternals VMMap [38] during the Speedometer 3.1 benchmark [17]. Chrome committed over

200 MB to the heap (50,006 pages), compared to 1.8 MB on the stack and 16 MB in mapped I/O

regions. This heap-heavy profile (>90%) reflects typical browser behavior driven by DOM structures,

JavaScript objects, and the V8 engine. These results, consistent with Chromium’s architecture,

confirm that our method captures the dominant memory usage patterns under realistic workloads.

3.4 Existing Memory Profiling Approach
Table 1 compares our approach against three representative tools native to the Chromium ecosystem.

MemoryInfra [4] provides timeline-based profiling through chrome://tracing, offering sub-

system level attribution via the MemoryDumpProvider interface. Components self-report their

allocations at configurable intervals, light dumps every 250ms and heavy dumps every 2 seconds.

While this approach integrates seamlessly with Chromium’s tracing infrastructure and imposes low

overhead, it requires manual implementation of dump providers for each subsystem and cannot

track individual object lifecycles or detect transient allocation patterns between snapshots.

Heap Profiler [7] captures per-allocation backtraces, enabling developers to attribute memory

consumption to specific call sites. This granularity comes at significant cost: storing complete stack

traces for every allocation increases memory overhead substantially, and type resolution requires

debug symbol availability. The profiler tracks allocations but not deallocations, precluding lifetime

analysis.

AddressSanitizer (ASan)[1, 48] and LeakSanitizer (LSan)[9] instrument memory accesses

to detect errors such as use-after-free, buffer overflows, and memory leaks. These tools excel at

identifying correctness bugs but do not characterize normal memory behavior, they report only

error events and leaked allocations at program termination, providing no visibility into object

lifecycles or access patterns during execution.

Our approach enables continuous per-object tracking with lifetime state transitions, automatic

module attribution without manual instrumentation, and the ability to detect inefficiencies like zom-

bie objects. The LLVM instrumentation pass requires no source modifications, enabling immediate

extension to new subsystems as Chromium evolves.
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Table 1. Comparison of memory profiling methods for object tracking in Chromium.

Dimension This Work MemoryInfra Heap Profiler ASan/LSan

Granularity

Tracking Unit Per-object lifecycle Per-subsystem

aggregates

Per-allocation backtraces Per-allocation errors

Event Types alloc, ctor, dtor, dealloc Periodic snapshots Allocation only Error events only

Type Resolution Compile-time type_map Self-reported by provider Debug builds only None

Temporal Data Continuous (RDTSC) Intervals (250ms/2s) Cumulative None

Overhead

Runtime 1.1×–1.9× 0.05–0.10× High (variable) ∼2×
Memory 16 bytes/event Minimal High (backtraces) 2–3×
Binary Size ∼0.098× Negligible Negligible ∼2×

Developer Effort

Source Modifications None Required per subsystem None None

New Component Support Automatic Manual

MemoryDumpProvider
Automatic Automatic

Build Integration LLVM pass Native Flag-based Flag-based

Relationship Mapping

Object-to-Module Automatic via IR Manual attribution Indirect (backtrace) None

Lifetime States Live/Zombie/Destroyed/

Reallocated/Persistent

None None Leaked only

Reuse Tracking Address reuse chains None None None

Access Correlation VTune integration None None None

Table 2. Summary of Browser Interaction Experiments

Experiment Type Affected Modules Description

OPENHOMEPAGE Static Navigation content, net, blink Load static homepage; baseline for memory use.

CLICKLINK Navigation content, blink, net Navigate via hyperlink; observe DOM teardown.

FILLFORM Form Interaction blink, v8 Enter text into forms; track transient JS objects.

MULTISTEPFORM Form Workflow blink, v8, content Submit multi-page form with validation/state.

AJAXLOAD Dynamic Content v8, net, blink Trigger AJAX; monitor JS heap behavior.

NAVBACKFWD State Transition content,blink, nav. Use history API; test caching and DOM restore.

REFRESHPAGE Page Reload content, blink, v8 Full reload; analyze memory cleanup/reuse.

EXECJAVASCRIPT Scripting v8, devtools, blink Inject and run JS; stress JS engine.

COOKIEMANAGEMENT Persistent State net, content, storage Read/write/delete cookies; test storage APIs.

DRAGDROP UI Interaction blink, ui, content Perform drag-and-drop; test UI/DOM updates.

HANDLEALERT Modal Handling content, blink, ui Interact with alerts; monitor UI thread.

TAKESS Rendering/Output blink, viz, gpu, content Capture page state; check rendering pipeline.

WEBGL2D 2D Graphics gpu, blink, viz, v8 Animate circles; simulate 2D graphics load.

MEMSTRESS10-60 Memory Stress v8, blink, GC Allocate JS objects; simulate memory pressure.

4 Experimental Methodology
To systematically observe and analyze Chromium’s

1
memory and object behavior under realistic

interaction patterns, we develop a suite of automated browser experiments using pytest and the

Selenium WebDriver. These experiments are representative of a range of user browser interactions,

covering both typical (e.g., page navigation, form interactions) and edge-case behaviors (memory

1
Commit hash c61aa6fa0196356fda60dca670ed358c26f9fd3b
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stress tests), while capturing fine-grained object and memory traces. Table 2 summarizes the

scenarios we implement, including interaction types, targeted browser subsystems, and intended

stress patterns. All experiments are conducted on an Intel(R) Core(TM) i5-12900KS processor

(3.6 GHz), running Ubuntu 24.04. For microarchitectural and memory access analysis, we develop

a wrapper around Intel VTune Profiler [8] (version 2025.1.0, build 629847) that logs data via

Intel Sampling Drivers. To ensure consistency, we disable Address Space Layout Randomization

(ASLR), Intel’s Turbo Boost (frequency scaling), and hyper-threading, and set all CPU governors to

performance. Profiling results were exported with Data Address as the pivot, allowing us to map

memory accesses back to individual objects.

5 Evaluation
In this section, we present our observations and findings, highlighting key insights and affirmations

regarding Chromium’s memory management behavior and design choices.

5.1 Object Lifetime Characterization
Object Events. We begin by characterizing the number of key life cycle events - allocations,

Fig. 6. Object allocation (Alloc), deallocation (Dealloc),
constructor (Ctor), and destructor (Dtor) events across
different experiments shown in Table 2.

deallocations, constructor invocations, and de-

structor invocations (Figure 6). Constructor

calls occur most frequently, outpacing alloca-

tions, which highlights a common pattern of

in-place object memory reuse without fresh

memory allocation. This reuse is indicative of

memory pooling strategies designed to reduce

allocator overhead. In contrast, we observe

fewer deallocations than allocations, reflecting

deferred reclamation or remapping strategies

that avoid conventional free paths. Most no-

tably, destructor invocations are significantly

lower than constructor calls. This discrepancy

arises from the widespread use of bulk memory

reclamation mechanisms (garbage collection),

which eliminate the need for explicit destruc-

tion. These trends collectively reveal that an

object life cycle is heavily optimized for performance and tailored to the demands of low-latency

rendering and high-throughput DOM manipulation, aimed for minimizing allocation, deallocation,

and destruction overhead.

Insight 1

Constructors consistently outpace allocations, while explicit deallocations are infrequent,

suggesting extensive in-place object reuse and the prevalence of deferred reclamation.

Recommendation 1

Developers should continue to focus on taking advantage of the reuse and deferred reclama-

tion model to avoid frequent allocation/deallocation overhead, particularly in performance-

critical code regions.
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To quantify the impact of memory pooling and deferred reclamation, we model two scenarios:

(1) No memory-pooling: every object construction directly invokes the allocator.

(2) No deferred reclamation: requires graceful destruction of an object upon its death.

We conservatively estimate cycle estimates based on PartitionAlloc [11], TCMalloc [26], and

Mallacc [32] as follows: average allocation latency of 150 cycles, deallocation latency of 100 cycles

on the fast path, a typical constructor cost of 300 cycles, and destructor cost of 200 cycles. These

values represent optimistic yet loosely bounded estimates suitable for comparative analysis. In

practice, slow-path allocations that involve OS system calls may incur ≈500-5000 cycles, and

constructor/destructor costs vary substantially with object size, initialization complexity, and design

decisions. Our projections show that no memory pooling increases average allocator invocations

from 7,903 to 2.09M operations, equivalent to 519.5M additional cycles, slowing down execution by

240X. On the other hand, no deferred reclamation forces an additional 1.39M destructor calls on top

of 695,446 baseline calls, imposing a 3.33× overhead. Together, these results indicate that pooling

and deferred reclamation jointly avoid approximately 797.6 million wasted cycles in our execution

trace, underscoring their substantial role in amortizing allocation and reclamation costs.

Fig. 7. Distribution of object lifetimes plotted on a
log-scaled y-axis. The red curve overlays a LOWESS-
smoothed trend line to highlight the underlying pat-
tern and deviations across the lifetime spectrum.

Object Lifetime Distribution. Figure 7 shows
the distribution of object lifetimes, averaged

across all experiments shown in Table 2. Clearly,

the distribution exhibits a classic exponential

decay, with the vast majority of objects be-

ing ephemeral (i.e., having short life spans), a

pattern consistent with transient allocation be-

havior commonly observed in large-scale ap-

plications. This profile is strongly aligned with

the performance assumptions of generational

garbage collection (GC) and validates the archi-

tectural choices in Chromium’s memory man-

agement subsystem (see Section 2.5).

Following the initial decay, the lifetime distri-

bution enters a relatively flat phase, indicating a

cohort of objects with mid-range lifetimes. Most

of these objects are GPU-related objects such as

GrDirectContextPriv, GrShaderVar, and GrYUVATextureProxies that persist across draw passes or

video decode phases, encapsulating shader state and texture resources. Similarly, SkShader instances

live across paint operations and may be cached within rendering pipelines. Platform abstractions

like ScopedGObject is similar to a scoped_refptr for GObject types, with lifetimes scoped to UI com-

ponents or platform events. Utility classes such as ClearCollectionScope and SkAutoMutexExclusive

support scoped object management and synchronization. These objects are typically associated with

components that implement caching, session state, or similar persistent-but-not-global semantics.

Beyond this flat phase, the tail of the lifetime distribution becomes more erratic, exhibiting

greater variance and a pronounced spike,indicating the presence of highly persistent or effectively

zombie objects. Upon closer inspection, the dominant type in this region is PrefService (∼39%),
defined in components/prefs/pref_service.h, which provides centralized access to user preference

data and policy-controlled settings. This is followed by GrGLGpu and GrGLAttribArrayState, which

together account for ∼30% of objects in this region. Both originate from Skia’s OpenGL backend

(skia/src/gpu/ganesh/gl) and manage critical aspects of GPU state: GrGLGpu oversees rendering

operations and framebuffer configuration, while GrGLAttribArrayState tracks vertex attribute
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bindings. The next most frequent type is GURL (∼20%), from Chromium’s core URL handling

library, which encapsulates parsed URLs and normalization logic. Finally, ContentSettingsPattern

appears frequently in this tail, serving as a key structure for mapping content permission rules

(e.g., cookies, JavaScript) to URL patterns.

Overall, the majority of persistent objects fall into three domains: Inter Process Communication

(mojo, ipc), URL parsing (e.g., GURL, URLPattern), and graphics state management (e.g., Skia and

cc/paint). A breakdown of object mortality at the tail shows that 96.10% are persistent/zombies,

while 3.74% are explicitly destroyed, and only 0.14% are reclaimed due to address reuse.

Insight 2

Chromium employs a mix of different memory management policies based on the locality

profiles and performance requirements of the subsystem - Blink/V8 leverage Mark & Sweep

and Generational Garbage Collection, Skia uses arena-based allocation, and browser services

employ scoped reference pointers alongside long-lived persistent global objects.

Recommendation 2

For future subsystems, developers should leverage garbage collection for dynamic language

bindings and object graphs, arenas for rendering, and scoped computation for services.

5.2 Object Size Heterogeneity
We categorize the memory footprint of objects based on allocation size, highlighting contrasting

behaviors of small and large object allocations.

Small Objects (1, 4, and 8 Bytes). The smallest observed objects are 1-byte, followed by 4-

byte and 8-byte allocations. These are typically low-level constructs used for management and

synchronization. Examples include AsanUnpoisonScope, SkSpinlock, SkSafeMath, SkOnce, All-

LABsAreEmpty, and DirtyBit. SkOnce (1-byte type), defined in SkOnce.h (Skia), supports thread-

safe one-time initialization. While useful, widespread use of SkOnce may lead to unnecessary

allocation churn if not carefully managed. Auditing such usage may reveal optimization oppor-

tunities. Most 8-byte allocations are smart pointers, primarily used for lifetime tracking and

shared ownership. Although expected in large codebases, the sheer volume of such pointers

implies non-trivial overhead from pointer-based indirection. These small objects, while light-

weight individually, contribute disproportionately to allocator overhead and heap fragmentation.

Their frequency compounds memory pollution when they are long-lived or never deallocated.

Fig. 8. Geomean Object Lifetimes

Large Objects (3,000-65,568 bytes). The

largest observed allocations, up to 65,568 bytes,

originate from SkSTArenaAlloc, Skia’s arena

allocator. Designed for high-throughput, low-

fragmentation allocation, SkSTArenaAlloc allo-

cates memory in exponentially increasing block

sizes following a Fibonacci sequence. SkSTAre-

naAlloc begins with a user-provided block or a

default size and allocates new blocks as needed.

Block sizes grow as 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for min-

imizing block churn and deallocations. This
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strategy benefits performance but may lead to internal fragmentation and memory waste, partic-

ularly when arena lifetime outlasts that of constituent objects. As a result, persistent or zombie

objects in these blocks cause significant memory retention. While smaller than SkSTArenaAlloc,

instances of SelectedKeywordView, which is responsible for "tab-to-search" UI functionality in the

browser’s location bar, appear frequently during a session. This class interprets user input like

"search google <query>" to trigger contextual actions. Frequent instantiation under interactive

workloads can compound memory pressure. We next examine the correlation between object size

and lifetime. As shown in Figure-8, across all operations, lifetimes of a small objects are dramatically

shorter than that of large objects. This aligns with the expectation that small objects are likely

transient or temporary data, while large objects are often related to persistent resources (like

graphic buffers, DOM Trees, Render Trees, etc.).

We further examine the state of the object in its life cycle according to the taxonomy described in

Section 3.2. We find that most small objects are gracefully deallocated via destructors or efficiently

reclaimed and reused by the garbage collector. Only a small fraction of these remain suspended in

an zombie state. In contrast, while large objects are also typically terminated through destructors,

their memory is not immediately reclaimed. This aligns with the principles of generational garbage

collection, where older objects are collected less frequently. Notably, even the youngest large objects

in Chromium tend to exhibit longer lifetimes than their smaller counterparts.

Insight 3

Most objects are small and ephemeral in their lifespan, dominating the allocation events,

but contributing minimally to total memory usage. However, a significant outlier of large

arena-allocated persistent objects exists, related to graphics buffers and rendering.

Recommendation 3

Developers should audit and minimize the allocation of small objects as they tend to have a

high allocator cost per byte, i.e., their overhead is mostly hidden in allocator metadata and

fragmentation, not raw memory usage.

Page Pollution. The primary challenge posed by persistent and zombie objects is not their sheer
count, but their spatial distribution across memory pages. These objects fragment memory, prevent-

ing full page reclamation and undermining the efficiency of memory reuse mechanisms. Figure-9b

illustrates that pages with a high number of zombies tend to contain small objects (averaging 1-10

bytes) while large zombies (>1 KB) are more likely to appear isolated or in low density.

High-density pages filled with numerous small, inactive objects exacerbate memory fragmen-

tation and complicate the process of reclaiming memory. Although individual objects may be

relatively small, their combined footprint can prevent page reuse or efficient compaction. Moreover,

these objects may persistently occupy cache lines or TLB entries, contributing to broader system

inefficiencies. Consequently, these pages are more challenging to evict or reuse without precise

object-level tracking. In contrast, low-density pages containing large Zombie objects serve as

clear targets for coarse-grained reclamation. Since these pages primarily host a few bulky, dead

allocations, they can be efficiently identified and released through page-level mechanisms, provided

that allocation tracking metadata supports this functionality. This observation motivates the design

of tiered cleanup strategies: aggressively compact or clear high-density pages of small Zombies,

while directly deallocating low-density pages with large ones.
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(a) (b)

Fig. 9. (a) Page composition by object states (R: Reallocated, Z: Zombie, D: Destroyed, P: Persistent), normal-
ized column-wise. (b) Zombie count and mean size per page.

Further analysis reveals a structural impediment to effective memory reclamation. Figure-9a

shows that zombie objects frequently coexist with objects that were instantiated on reclaimed

memory (i.e., pages with R+Z status in the figure). This co-residency hinders the ability of garbage

collectors or memory managers to reclaim entire pages, even when parts of them are reallocated

and assigned to newly created objects. While majority of objects can be reclaimed and reallo-

cated efficiently, zombie objects prevent the wholesale deallocation of these pages, resulting in a

phenomenon we term page pollution by zombies.

This effect is particularly pronounced for small zombie objects, which, despite their insignif-

icant individual footprint, scatter across memory and become interleaved with live allocations.

Consequently, memory managers are compelled to adopt a partial reuse model, where page reuse

is constrained by the liveness of the smallest objects. This fragmentation severely restricts opti-

mizations such as huge-page coalescing (where the operating system combines smaller memory

pages into larger huge pages to improve performance by reducing page table overhead), OS-level

page release, and slab reclamation. It is worth noting that this distribution holds across vari-

ous workloads, reinforcing the conclusion that Zombie behavior is a structural consequence of

Chromium’s memory semantics, rather than a mere workload-specific anomaly. This suggests that

runtime systems could benefit from identifying polluted pages as a unit of optimization, whether

for eviction, migration, or triggering garbage collection, without the need for comprehensive

program analysis. Effective mitigation may require isolating short-lived or inactive allocations,

potentially through better segregated allocation pools or lifetime-aware object placement strategies,

to minimize zombie-liveness interference and enhance page-level cleanup potential.

Insight 4

Small zombie objects can also contribute to spatial fragmentation, preventing entire memory

pages from being reclaimed even if most of their contents are dead, and interfering with

system-level optimizations such as huge page coalescing.
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Fig. 10. Affect of size and lifetime-aware object pooling on Memory access rates and total reclaimable pages
per size bucket.

Recommendation 4

Use lifetime-aware placement to ensure small objects that have the potential to become

zombies are contained within a small subset of pages and employ lifetime-aware arena

partitioning to prevent long-lived zombie objects from pinning entire blocks in memory.

To evaluate the impact of size and lifetime-aware object pooling, we model a configuration

in which objects belonging to the same size class and exhibiting similar lifetimes are pooled

together to enable batched reclamation. We project both allocation overhead and memory cost

under progressive size promotion, where smaller objects are aggregated into larger buckets. As

shown in Figure 10, object pooling and migration markedly alter memory activity (measured in

memory references per second) across size categories. As smaller objects (1-4 KB) are pooled and

promoted into larger buckets, we observe a pronounced shift in memory activity toward the 16 KB

+ size range. Although the relative change for very small objects (0-64 B) appears modest, their

contribution to reclaimable pages is substantial, as reflected in the right-hand panel of the figure,

highlighting the disproportionate effect of small-object pooling on overall memory reclamation

efficiency.

5.3 Object Activity Characterization
Live vs In-Use. Figures 11a, 11b, and 12a present the number of live and in-use objects, and their

types, along with the corresponding number of pages and L3 cache lines containing the objects, as

observed across each experiment. We make several observations.

First, even though tens of millions of allocations are made throughout execution, the number

of live objects at any given point in time is a small fraction of those allocations, mostly capped at

tens of thousands of objects across the different experiments. The number of in-use objects is even

smaller, hovering over a few hundreds to thousands of objects at any given point. This suggests

that most code regions involve computations featuring a limited set of objects and the liveness of

most objects do not extend beyond short time windows. Second, even though a sizeable number

of objects remain live at any given point in time, they typically map to only a small set of pages
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(a) (b)

Fig. 11. (a) Live Objects, Pages, and LLC Lines. (b) Live vs In-Use Data Types.

and cache lines, suggesting significant compaction enabled by the memory allocators coupled with

high locality.

In fact, resident page counts vary by at most ±10% (0.5-1.5K pages) and the working set size

typically does not exceed the capacity of the L1 cache. This is confirmed in Figure 12b that shows

that most of the accesses are L1 hits across all of the experiments. In some cases, particularly during

the initialization phase, we observe that objects contend for the same L1 cache set, resulting in

conflict misses, although this behavior is not observed once steady state is reached. Third, the

number of distinct C++ data types of objects that are live or in-use are an order of magnitude

smaller than the actual number of objects that are live or in-use, suggesting that multiple objects

that belong to the same data type are typically used at once. This also aligns with the expectation

that developers typically tend to work with a small set of objects and data types at any given point

in time, despite the sheer number of classes and complex data types defined across all the modules

and subsystems in Chromium. This behavior can be observed in Figure 11b.

Fourth, all runs exhibit a rapid increase in the number of live objects within the first 10-20 𝜇s,

following the initial rise, live-object counts stabilize and persist for 40-80𝜇s. This expected behavior

is cause by the initial setup procedure where lots of objects are created to support different modules

of Chromium as discussed in Section-2. A secondary spike in live object counts is observed in most

experiments between 35-38𝜇s. This corresponds to Chromium’s delayed asynchronous initialization

strategy, where non-critical background tasks (e.g., metrics collection, service startup) are deferred

to avoid blocking the main UI thread during early execution. AJAXLOAD and WEBGL2D do not

exhibit this behavior, as the experiment duration is insufficient to reach the deferred initialization

phase. In OPENHOMEPAGE, the dominant scale of the initial allocations visually obscures the spike.
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(a) (b)

Fig. 12. (a) In-Use Objects, Pages and LLC Lines. (b) Ratio of L1, L2, L3 Hit and DRAM bound Loads. Total
accesses: L1 hit + L1 miss + FB hit.

Insight 5

Despite millions of allocations, the active working set of objects is very small and typically

fits within the L1 cache. These objects belong to a small set of distinct high-level data types,

indicating that developers refrain from working with too many objects and data types at

once.

Recommendation 5

Developers should continue to carefully optimize the active working set to be cache-friendly.

At≈5.07×107 𝜇s, OPENHOMEPAGE exhibits a sharp drop of∼34K live objects. These objects originate

due to asynchronous iterable bindings implemented by the Blink engine for JavaScript. The objects

serve as V8-backed wrappers and iterators bridging C++ and JavaScript asynchronous control

flows. Their coordinated destruction via C++ destructors indicates the completion of a major

asynchronous rendering phase. This drop aligns with the browser having fully loaded, suggesting

that associated tasks, e.g., stream readers or worker-based iterators, are shutting down.

Insight 6

Most Chromium tasks are characterized by a rapid increase in the number of live objects,

followed by a period of stabilization, and a secondary spike to delayed asynchronous

initialization of objects from background non-critical threads.
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Recommendation 6

Developers should manage deferred asynchronous initialization carefully so as to avoid

sharp spikes in memory usage during performance/user experience-critical phases.

Recommendation 7

System designers should employ phase-aware memory management policies by using tight

compaction and short-lifetime arenas during startup, transitioning to steady-state garbage

collection tuning after stabilization, and triggering asynchronous cleanup post-deferred

initialization phase.

5.4 Object-Centric Characterization of CPU microarchitectural Behavior
Software performance depends not only on the algorithmic complexity, but on how predictably it ex-

ercises the underlying 𝜇architectural optimizations. In Figure 13, we examine two key 𝜇architectural

metrics that capture these behaviors: branch mispredictions per kilo instructions (MPKI) and heavy

operations per kilo instructions (HPKI). MPKI quantifies branching entropy, he extent to which

the processor’s branch predictor fails to anticipate control-flow direction, causing pipeline flushes

and front-end stalls. HPKI, on the other hand, reflects backend inefficiency, including cache-miss

penalties and latency from complex arithmetic or memory-dependence chains. The particular Intel

performance counter measuring heavy operations accounts for complex x86 instructions that break

down into more than one micro-operation, which are typically common for pointer arithmetic

instructions that employ register-memory addressing mode.

Traditional code-centric analyses study MPKI and HPKI at the level of individual algorithms or

functions, seeking to restructure code or scheduling logic for improved predictor friendliness or data

reuse. In contrast, we examine these effects from an object-centric perspective, and in particular,

inspect how MPKI and HPKI vary when specific object types are accessed during Chromium’s

execution. This approach decouples performance from static code structure and instead relates it

to dynamic object behavior, e.g., how data encapsulation and event-Our analysis indicates that this

perspective exposes architectural hotspots.

First, we observe that accesses within the GPU layer (e.g., GrResourceAllocator) occur during

phases of higher relative branching entropy (and thus higher branch MPKI) due to heavy use of

pointer indirection and complex control flow in state-dependent checks (e.g., those required for

resource eviction and synchronization). GrResourceAllocator, in particular, incorporates dynami-

cally sized containers such as hash maps and live interval-tracking structures that not only entail

complex control flow, but also irregular memory access patterns with poor locality. This memory-

bounded nature of operations involving objects of the type GrResourceAllocator is also reflected in

it high HPKI. Second, UI-related object types such as BrowserFrame are typically vulnerable to

poor control flow predictability. This is because of their event-driven design that relies heavily on

deeply nested virtual dispatches (e.g., browser_view_->browser()->profile()->GetProfileType()) that

are often part of conditionals. Thus, accesses to BrowserFrame typically occurs during phases of

severely elevated branch MPKI, which is a direct result of the branch history table being polluted

from heterogeneous and unpredictable event sequences. Furthermore, nesting of operations (in this

case, virtual dispatches that typically entail a chain of complex call instructions that decompose

into two or more micro-operations) automatically implies the presence of long dependency chains

and hence low instruction-level parallelism, resulting in low backend efficiency as well. Third,

objects pertaining to the UI layer (e.g., ToolbarActionView, ContentSettingImageView, Tab) also
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Fig. 13. Comparison of top object types exhibiting high branch misprediction rates (MPKI, left) versus heavy
operation overhead (HPKI, right) across 12 experimental workloads.

suffer from conditional branch explosion from combinatorial state spaces, i.e., numerous feature

flags, permissions, and transient view states resulting in deeply nested conditional hierarchies.

Notably, these inefficiencies arise from the very abstractions that make Chromium’s software

architecture expressive and modular. Event-driven designs, virtual dispatch hierarchies, and dynam-

ically typed container patterns (e.g., hash maps and ref-counted handles) all optimize for software

flexibility, composability, and algorithmic efficiency, yet they implicitly trade off 𝜇architectural

predictability. Event-driven control introduces temporal irregularity that disrupts the branch pre-

dictor’s history tables; virtual dispatch incurs indirect branches that the branch predictor cannot

correlate across dynamic call targets; and hash-based containers, while reducing algorithmic time

complexity, produce pointer-chasing access patterns with high cache-miss penalties and weak spa-

tial locality. In essence, these abstractions optimize the big-O profile but degrade pipeline stability,

cache efficiency, and branch predictability.

Reworking these abstractions to achieve the best of both worlds requires a shift from purely algo-

rithmic optimization toward 𝜇architecturally informed abstraction design. For example, employing

flat hash maps (Google’s Swiss Tables) will allow us to retain O(1) access while improving cache

contiguity. Similarly, replacing polymorphic dispatch with table-driven routing to convert indirect

branches into direct indexed lookups, where possible, and batching or amortizing asynchronous

event handling to align with predictable temporal windows, could allow the software to main-

tain its architectural abstraction boundaries while still exploiting the underlying 𝜇architectural

optimizations.

Insight 7

Software abstractions that prioritize flexibility and algorithmic efficiency such as event-

driven designs, virtual dispatch, and hash-based containers, could potentially introduce

branching entropy and backend inefficiencies that fundamentally limit 𝜇architectural pre-

dictability and throughput.
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Recommendation 8

Reconcile abstraction and performance by redesigning data structures and control paths for

predictable access and locality using flat, contiguous containers, table-driven dispatch, and

batched event handling to align software modularity with 𝜇architectural efficiency.

5.5 Optimization Workflow

Fig. 14. Symptom-driven optimization workflow synthesizing insights from object lifetime, size heterogeneity,
spatial placement, and 𝜇architectural characterization. The diagnostic tree enables systematic identification
of memory inefficiencies and maps them to actionable optimization opportunities.

Based on our insights and recommendations, we propose an optimization workflow for object-

centric code optimizations in large-scale, object-oriented software systems. This workflow adopts a

symptom-driven diagnostic approach, mapping observable metrics to actionable interventions. We

identify the following five primary symptom categories, each leading to a decision tree depicted in

Figure 14-

(1) High allocation churn,measured as combined allocation and deallocation events per second,

indicates excessive allocator activity traceable to insufficient object reuse. The diagnostic

process begins by examining constructor-to-allocation ratios: when constructors consistently

exceed allocations, the subsystem can leverage in-place reuse or deferred reclamation, and
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further optimization should focus on extending these patterns to additional object types.

When allocations dominate, optimization should align memory management strategies with

subsystem semantics by adopting module-specific policies such as arena allocation or memory

pooling (Insights 1, 2).

(2) Excessive heap growth, observable as committed bytes increasing over time, often stems

from small-object dominance rather than large allocations. In these cases, overhead accumu-

lates in allocator metadata and internal fragmentation rather than application data, resulting

in elevated per-byte costs that are not immediately apparent from aggregate memory statis-

tics. Optimization should focus on auditing high-churn small allocations and consolidating

objects with similar size classes and lifetimes into dedicated pools (Insight 3).

(3) Low page utilization, quantified as the ratio of live bytes to committed bytes, reflects

inefficient page-level memory use caused by zombie objects that prevent wholesale recla-

mation. The spatial distribution of zombies determines the appropriate intervention: small

zombies scattered across many pages require lifetime-aware placement and arena partitioning

to concentrate them into reclaimable regions, whereas large isolated zombies occupying

low-density pages are amenable to coarse-grained page reclamation through direct OS hints

(Insight 4).

(4) 𝜇architectural inefficiency, measured via hardware performance counters as misses per

kilo-instruction (MPKI) or heavy operations per kilo-instruction (HPKI), arises from either

working set overflow or abstraction-induced unpredictability. The diagnostic process first

determines whether the active working set exceeds L1 cache capacity; if so, optimization

should target improved locality through cache-friendly data layout and access pattern re-

structuring. If elevated miss rates persist despite a reasonably sized working set, the cause is

typically branch entropy introduced by event-driven designs, virtual dispatch hierarchies, or

pointer-chasing data structures. These inefficiencies may respond to abstraction redesign

using flat containers, table-driven dispatch, and batched event handling (Insights 5, 7).

(5) Transient memory spikes, characterized by the ratio of peak to steady-state memory

consumption, indicate phase-correlated memory pressure occurring during startup, asynchro-

nous initialization, or steady-state transitions. Each phase benefits from distinct interventions:

startup spikes respond to tight compaction and short-lifetime arenas; initialization-phase

spikes require careful scheduling of deferred background tasks to avoid overlapping with user-

facing activity; and steady-state fluctuations indicate opportunities for garbage collection

tuning to align reclamation with natural idle periods (Insight 6).

Quantifying Optimization Potential.
Our analysis identifies three optimization axes with quantifiable impact. First, existing pooling

and deferred reclamation strategies already save approximately 797.6M cycles per session by

reducing allocator invocations from 2.09M to 7,903 operations and eliminating 1.39M unnecessary

destructor calls. Disabling these mechanisms would result in significant slowdowns, with 240x

and 3.33x reductions, respectively (see Section 5.1, ‘Object Events’). Second, lifetime-aware object

placement offers additional memory efficiency gains. Currently, zombie objects co-reside with

live allocations on the majority of partially occupied pages, preventing wholesale reclamation

even when the effective utilization is low. By segregating short-lived small objects (under 64

bytes) into dedicated arenas, we can enable page-granularity reclamation. This reduces committed

memory and improves TLB efficiency by reducing the number of resident pages and increasing

the eligibility for huge-page promotion (see Section 5.2, ‘Page Pollution’). Third, 𝜇architectural

optimizations targeting high-MPKI object types, particularly GPU resource managers and event-

driven UI components, present opportunities for measurable improvements in IPC. Replacing
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virtual dispatch chains with table-driven routing eliminates indirect branch mispredictions, while

substituting pointer-chasing hash maps with flat containers improves cache line utilization and

reduces the number of heavy operations (see Section 5.4). Collectively, these optimizations address

distinct bottlenecks: memory pooling reduces allocation costs, lifetime-aware placement minimizes

reclamation costs, and abstraction redesign restores 𝜇architectural efficiency lost due to increasing

software modularity.

6 Related Work
In this section, we discuss related work spanning code instrumentation, memory profiling, and

browser characterization. Table 3 summarizes key characteristics across representative techniques,

situating our lightweight, lifetime-aware approach within the broader landscape.

Table 3. Summary of related work on code instrumentation, memory profiling, and browser characterization.

Method Category Technique Granularity Limitation

Pin [36] Dynamic Binary Register re-allocation, shadow

mem.

Instruction High runtime overhead

Valgrind [42] Dynamic Binary Runtime framework Byte Prohibitive for production

DynamoRIO [22] Dynamic Binary Kernel-level coverage Instruction Complex deployment

DTrace [21] Process Probes Zero-overhead probes Function Limited active granularity

ASan [48] Compile-time Shadow memory transforms Byte Error detection only

MSan [49] Compile-time Bit-precise shadow prop. Bit High overhead

MemoryInfra [4] Runtime Profiling MemoryDumpProvider-

callbacks

Subsystem No object detail; manual inst.

PROMPT [51] Profiling Framework Extensible multi-type Configurable Generic; not browser-specific

Resurrector [50] Object Lifetime Alloc/dealloc tracking Object Not browser-scale

SWAT [24] Leak Detection Adaptive statistical Statistical May miss infrequent leaks

CRAMM [52] GC Profiling Per-process ref. tracking Reference JS heap only

DMon [34] Selective Profiling Resource-bounded Cache-level Selective, not comprehensive

DevTools [10] JS Heap Profiling V8 heap snapshots JS Object No native allocations

WebCore [53] Hardware Opt. SRU + Browser Engine Cache Architecture Hardware modification req.

Kanev et al. [31] Datacenter Profiling Warehouse-scale analysis System Server-focused

Musleh et al. [37] Mobile JS Phase-specific profiling Phase JS-centric

Ogasawara [43] Server JS Runtime library profiling Function Server-side only

Hwang et al. [27] Mobile I/O Storage pattern analysis I/O I/O-focused

Radhakrishnan [45] Browser-HW Multi-browser profiling System No optimization framework

6.1 Code Instrumentation.
Code instrumentation is a common technique for logging, tracing, profiling, and optimization [28,

44, 47]. Instrumentation can occur during compilation (source-level) or execution (binary-level) [20,

42, 54]. Dynamic binary instrumentation frameworks like Pin [36] and Valgrind [42] enable runtime

analysis without source code access, achieving efficient instrumentation through techniques like

register re-allocation and shadow memory support. For kernel-level instrumentation, DynamoRIO

extensions [22] provide comprehensive coverage of system-level code that browsers interact with

during rendering and JavaScript execution. Production system instrumentation through sampling

based approaches [5] and zero overhead frameworks like DTrace [21] help profile complex systems

with minimal performance impact. Compile-time instrumentation offers advantages when source

code is available. AddressSanitizer [48], widely used in Chromium development, achieves only

73% average slowdown for comprehensive memory error detection through efficient compile-

time transformation. MemorySanitizer [49] demonstrates similar benefits with 2.5x execution
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overhead using bit-precise shadow memory propagation. A frequently used alternative involves

instrumenting standard libraries instead of binaries, which enhances logging stability and is effective

for micro benchmarks or small programs. However, it struggles in large projects due to possibility

of self-triggering and results in execution pollution [39]. This method is unsuitable for Chromium,

which overrides standard library calls via custom wrappers, including memory management (see

Section 6.2). Hence, we implement compile-time instrumentation directly in the target binary.

6.2 Memory Profiling.
Chrome provides a timeline-based profiling tool called MemoryInfra [4], accessible via chrome://

tracing. It offers coarse-grained visibility into memory usage across browser components but

lacks object-level detail within individual modules. To log data, developers must register their

components by implementing a MemoryDumpProvider and integrating it with the memory dump

infrastructure. Modern profiling frameworks like PROMPT [51] provide extensible support for

multiple profiling types including memory-dependence, value-pattern, object-lifetime, and points-

to analysis with dramatically reduced implementation effort. Object lifetime profiling [50] enables

optimization of real-world programs by tracking allocation and deallocation patterns. Shadow

memory techniques [41] enable efficient metadata tracking by maintaining a shadow copy of

application memory, forming the foundation for modern memory profilers and checkers. Memory

leak detection in production environments requires low-overhead approaches. SWAT [24] uses

adaptive statistical profiling to achieve less than 5% overhead, making continuous leak detection

practical for live systems. For garbage-collected environments like JavaScript engines, CRAMM

[52] demonstrates techniques for gathering per-process reference information at approximately

1% overhead. Selective profiling approaches like DMon [34] achieve only 1.36% average overhead

through resource-bounded methodology that focuses on specific cache levels or memory based on

identified bottlenecks. While tools like Chrome’s DevTools Memory tab [10] provide insights into

JavaScript heap usage, they often lack detailed information about native memory allocations and

object-level granularity. This limitation hampers the ability to diagnose memory bloat and leaks

effectively.

6.3 Hardware Optimizations for Browsers.
Browser workloads exhibit unique microarchitectural characteristics that differ fundamentally from

traditional server applications. Microarchitectural profiling reveals that computation, rather than

networking, is the primary bottleneck inmodern browsers [30], with significant stress on instruction

caches and memory hierarchies. Zhu et al. [53] proposed WebCore, a processor architecture

optimized for mobile web workloads, incorporating a Style Resolution Unit (SRU) and Browser

Engine Cache. Combined, these yield 22.2% performance gain, 18.6% energy savings, and up to

10× acceleration in specific tasks. Peters et al. [40] profiled browser activity on heterogeneous

multi-processing (HMP) systems, breaking down CPU time and energy per thread and showing that

DVFS, thread allocation, and power gating can significantly reduce power use. Hwang et al. [27]

analyzed fivemobile browsers, finding browsing to be write-intensive with 11.7× write amplification.

Over 50% of I/Os relate to metadata/journaling, and 70% of Chrome’s storage volume resides in

SQLite. 57% of writes are synchronous, making up 68% of total write volume. Kanev et al. [31]

profiled warehouse-scale computers running web-facing workloads, identifying a "datacenter tax"

comprising nearly 30% of cycles from instruction cache misses and memory hierarchy stress. Web

search workload analysis [29] reveals how web applications stress memory hierarchies differently

than traditional server workloads, with implications for cache-conscious optimization. TailBench

[33] provides comprehensive methodology for characterizing latency-critical web applications

including cache behavior and memory hierarchy stress patterns. Musleh et al. [37] analyzed
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JavaScript workloads on mobile, emphasizing memory pressure and phase-specific variability in

execution due to inline caching and type predictability. They found that targeted optimizations

for predictable phases outperform generalized techniques. Analysis of server-side JavaScript [43]

reveals that 47.5% of CPU time is spent in C++ runtime libraries, highlighting cache and memory

hierarchy challenges in engine implementations. GreenWeb [6] demonstrates how JavaScript

patterns affect microarchitectural behavior including cache performance and energy consumption.

Radhakrishnan [45] found major browsers (IE, Firefox, Chrome) underutilize system hardware

across configurations, indicating inefficiencies in browser-hardware integration.

7 Conclusions
We present an empirical characterization of object allocation, lifetime, and memory behavior in

Chromium using a lightweight, non-intrusive profiling framework. Our analysis across diverse

workloads shows that while Chromium performs tens of millions of allocations, the number of live

and in-use objects at any point remains small and exhibits strong spatial locality. These objects are

densely packed into a limited number of pages and dominated by a small number of C++ types,

reflecting compact and type-local runtime behavior.

We also observe that persistent and zombie objects, though limited in number, contribute

disproportionately to memory fragmentation by hindering full-page reclamation. Small long-lived

objects are especially prone to polluting memory, while large objects managed via arenas risk

internal fragmentation when arena lifetimes exceed object lifetimes. These findings highlight

structural challenges in memory reuse and point to the potential value of intent-aware memory

management strategies in large-scale, event-driven systems.
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