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Modern web browsers manage millions of dynamic objects across tabs, frames, DOM elements, and JavaScript
contexts. However, fine-grained behaviors related to object allocation, lifetime, and memory usage in produc-
tion browsers remain elusive. Chromium’s modular and extensible design, use of specialized memory allocators,
and sensitivity to instrumentation overhead further complicate precise object tracking. To this end, we develop
a lightweight, thread-safe, and non-intrusive profiling framework. Using this infrastructure, we present an
empirical characterization of Chromium’s memory object behavior across twelve diverse, user-centric work-
loads. We examine object lifetime events, size diversity, spatial locality, type diversity, and memory activity,
and reflect on their broader software and architectural implications. Our study offers a systems-oriented view
into Chromium’s architecture and memory behavior, and highlights structural challenges in efficient memory
management in large-scale and diverse systems.
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1 Introduction

The open-source Chromium web browser project [23] has been widely adopted due to its modularity,
flexibility, extensibility, and performance-oriented nature. Its multi-process architecture integrates
rendering engines, graphics libraries, JavaScript runtimes, state-of-the-art memory allocators and
garbage collectors, and sandboxing technologies. It has been the bedrock of several modern browsers
such as Google Chrome, Microsoft Edge, Amazon Silk, and DuckDuckGo, and forms the core of
several desktop application frameworks such as Electron, used in popular applications such as
Slack and Visual Studio Code Editor. It is also used in security-conscious virtualized environments
such as Citrix Workspace [3] for secure web rendering. Owing to its wide deployment, even
minor inefficiencies could have a major impact on the user’s browsing experience, cloud resource
utilization, and memory pressure.

Conventional performance characterization, profiling, and optimization strategies typically em-
ploy a code-centric perspective, following Amdahl’s law [12-14, 25, 30], which involves identifying
and analyzing hot code regions and functions of interest to identify computational bottlenecks and
avenues for performance optimization. Data-centric strategies typically involve memory profiling
to examine potential memory leaks, fragmentation, and corruption. However, these techniques are
largely coarse-grained and scale poorly to large object-oriented codebases such as Chromium that
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combine several complex performance-critical software components such as rendering engines,
custom memory allocators, garbage collectors, and modules featuring event-driven computation
that span several object lifetimes and contexts.

In contrast to code-centric characterization, this work shifts the lens to an object-centric per-
spective, focusing on how dynamic C++ objects are allocated, accessed, and destroyed across the
browser’s subsystems, rather than keeping focus on identifying hot and tight loops for performance
optimization, thereby uncovering patterns and inefficiencies that remain hidden in aggregate code-
centric views. In particular, we perform a large-scale, albeit low-cost instrumentation of Chromium
with the goal of analyzing object lifetime behavior, access patterns, placement in hardware caches
and memory pages, deallocation (e.g., graceful destruction vs. reclamation through garbage col-
lection) and reallocation patterns, and interaction with microarchitectural structures such as the
branch predictor and execution units, allowing us to draw insights and make recommendations to
software developers and architects to improve the performance potential of Chromium.

This work introduces a lightweight, thread-safe, and source-agnostic profiling framework
based on compile-time instrumentation. Our tool tracks object allocations, access frequency, and
lifetimes without requiring modifications to the Chromium source code. By mapping object be-
havior across multiple browser subsystems, we provide fine-grained visibility into how different
components contribute to memory pressure, latency, and performance anomalies.

While developers can modify source code with custom counters or debug logic, conducting a
characterization effort at this scale demands significant time, effort, and resources. In contrast, this
work offers a highly portable tool that performs all instrumentation automatically at the LLVM IR
level at a low overhead, without the need for source modifications. Our approach applies to any
C/C++ codebase compiled with LLVM that employs object-oriented allocation patterns. We select
Chromium as the vehicle for this exploration due to its scale, architectural complexity spanning
renderer, GPU, network, and storage subsystems, and its multi-process design with diverse memory
management strategies (discussed in Section-2).

This methodology generalizes beyond browsers. Game engines such as Unreal Engine, database
systems like ClickHouse[46] and RocksDB[18], and multimedia frameworks like FFmpeg[19] share
similar characteristics: modular C++ architectures, custom allocators, and complex object lifecycles.
Insights derived from Chromium can transfer directly to these domains. However, instrumentation
of a codebase at Chromium’s scale entails significant challenges.

First, low-overhead profiling without source modifications requires precise integration to avoid
disrupting normal execution. Our framework uses compile-time instrumentation with inline as-
sembly blocks inserted into target control paths where lightweight hooks invoke the RDTSC
instruction for high-resolution timestamping at minimal cost. Second, Chromium employs custom
memory allocators (Section 2.5), rendering standard library allocation hooks at the OS level inac-
curate. We implement per-module allocation tracking by targeting specific atomic system calls
that Chromium’s allocators use to get accurate event logs and avoid interfering with its memory
management. Third, multithreaded timing is complicated by core migrations, context switches,
and unsynchronized clocks. We address this with per-thread timing blocks that use frequency-
invariant and core-synchronized timestamp counters. Fourth, overhead is critical; components like
networking and IPC are latency sensitive, and delays from instrumentation can cause timeouts.
Excessive heap use or interference with reserved memory pools can crash Chromium. Our design
limits logging-related allocations to 16 bytes per event to minimize heap usage. Traditional logging
incurs high overhead from libc I/O and synchronization. Instead, we generate compile-time identity
tags, use static buffers, and flush logs via minimal inline assembly blocks that invoke relatively
low-overhead system calls, bypassing standard libraries entirely. Our profiling and instrumentation
infrastructure is generic and can target any object-oriented application that can be compiled with
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the LLVM/Clang compiler - ideal targets include browsers, graphics libraries, media players, and
web servers. In this work, we leverage Chromium as a demonstration vehicle.

There are several important implications of an object-centric characterization. First, precisely
tracking object lifetime behavior, allocation, deallocation, and reallocation patterns could help better
tailor memory management strategies. We find that the number, types, and sizes of objects that are
ephemeral or persistent, and their destruction and reclamation patterns could vary across different
execution flows, providing hints and heuristics to guide better memory management, garbage
collection, and lifetime refactoring strategies. Second, it could help identify zombie objects (those
that will no longer be accessed, and yet aren’t reclaimed into the memory pool). This could not only
help improve the efficiency of the garbage collector, but could also allow for targeted placement of
deallocation hooks and automatic migration to safer and efficient C++ constructs such as smart
pointers. Third, by analyzing the composition of memory pages by object lifetime categories (e.g.,
persistent, ephemeral but frequently reallocated, zombie, gracefully destroyed), valuable insights
could be gained regarding potential fragmentation patterns and allocator inefficiencies. Fourth,
identifying object access patterns and placement in hardware caches and memory pages could
uncover memory hotspots and bottlenecks (e.g., false sharing) and enable the deployment of tailored
optimizations such as cache conflict-averse placement and profile-guided prefetching.

In summary, we make the following major contributions:

e A systems-oriented tutorial on Chromium’s architecture and memory behavior. We
provide a concise, structured overview of Chromium’s key components and their interaction
with memory allocation subsystems, offering valuable context for researchers studying
large-scale, multi-threaded applications.

e A scalable, low-overhead instrumentation framework for object-centric charac-
terization. Our lightweight, thread-safe infrastructure enables detailed tracking of object
allocations, deallocations, memory reuse, and access patterns across Chromium’s complex
runtime without requiring source code modifications.

e A detailed characterization of object allocation, deallocation, and reallocation dy-
namics. We quantify allocation intensity, highlight hotspots across browser subsystems, and
uncover patterns of allocation churn and reuse not captured by conventional profilers.

e An in-depth analysis of object lifetime distributions, spatial placement, and locality.
Our study reveals midlife and persistent object classes, memory pollution from zombie objects,
and cache-level compaction behaviors that shape memory efficiency in Chromium.

o Identification of object types and memory behaviors critical to performance. We
surface dominant object classes by frequency, longevity, and memory footprint, whose man-
agement disproportionately impacts memory retention and allocator efficiency. In addition,
we also study the architectural impact of object layout and choice of data structures.

¢ Recommendations for runtime and allocator-level optimizations. Based on our find-
ings, we outline directions for improving garbage collection heuristics, lifetime-aware memory
placement, and mechanisms for mitigating memory fragmentation.

2 Chromium Browser Architecture

In this section, we provide requisite background on the Chromium architecture, describing its
software organization, salient components and features, and their interactions, in addition to a
brief overview of its memory management and garbage collection utilities.

One of the key defining features of Chromium is that it adopts a modular and a multi-threaded
architecture, where each major subsystem is encapsulated within its own process or module for
improved security and performance isolation and scalability. At startup, Chromium launches two
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primary processes: (a) the browser process, responsible for coordinating core browser functionality,
and (b) the initial renderer process, which hosts the Blink rendering engine and the V8 JavaScript
engine.

As users open new tabs, Chromium dynamically spawns additional renderer processes. Further-
more, browser extensions, plugins, and standalone applications may also execute within dedicated
processes, contributing to the overall process diversity.

2.1 Elements of a webpage

Figure-1 illustrates Chromium’s modular architecture in relation to the tasks involved in
loading a webpage. A webpage in Chromium is composed of several fundamental abstractions:
page, frame, Document Object Model (DOM)

window, and document. A page encapsulates

the logical concept of a browser tab. While

each renderer process may handle multiple
pages, a page typically maps to a single tab
from the user’s perspective. A frame models
the hierarchical structure of a web page, in-
cluding both the main frame and any nested
iframe elements. Each page may contain multi-
ple frames arranged in a tree-like fashion. Each
frame owns a single DOM Window, which corre-
sponds to the global window object in JavaScript
and provides the execution environment for
scripts. The Document object, accessible via
window.document, contains the parsed HTML
content and serves as the root of the DOM
tree for the frame’s content. Further, to unify
execution across different threading models,
Chromium introduces the execution context ab-
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straction. An execution context represents ei-
ther a Document (for main-thread execution) or
a WorkerGlobalScope (for worker-thread exe-
cution), enabling a consistent interface for script execution, resource access, and event handling
regardless of the underlying context.

Fig. 1. Page loading overview in Chromium

2.2 Blink Rendering Engine

Blink, Chromium’s rendering engine, is responsible for DOM construction, style and layout compu-
tation, JavaScript execution, and integration with the Chrome compositor. [2]

Rendering Pipeline. Parsing begins with HTML, generating the DOM tree, a structured represen-
tation of the page and the primary interface for JavaScript. The V8 engine accesses the DOM through
bindings, thin wrappers that expose C++ structures to JavaScript. A document can include multiple
DOM trees. Next, CSS rules are matched against DOM nodes to compute styles. The engine then
constructs a parallel Layout Tree, whose nodes calculate positional geometry using element-specific
layout algorithms. During the Paint phase, layout objects emit display items: commands like “draw
rectangle” or “render text.” Multiple display items may represent different visual layers of the
same element. Display items are converted into pixel data in the Rasterization phase using the
Skia [15] graphics library. Rasterization produces a bitmap by issuing hardware-abstracted draw
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calls, including Bézier paths and vector shapes. Finally, raster commands are bundled into a GPU
command buffer, transmitted over IPC, and executed by the GPU to render pixels onscreen.
Threads and Memory. Blink runs in sandboxed renderer processes, each with a dedicated main
thread and optional worker/internal threads. The main thread handles JavaScript, DOM, style, and
layout, making Blink mostly single-threaded. Chromium’s site isolation model enforces separate
renderer processes for distinct sites. For example, an isolate specific origin policy could be specified
such that mail.google.com and photos.google.com appear to share a site, but flights.google.com does
not. Memory is managed using a hybrid model that comprises of: (a) Oilpan, a garbage collector-
based heap allocator, used for most object lifetimes, and (b) PartitionAlloc, a manual allocator, used
for performance-critical objects or objects with simpler lifetimes. We discuss this in greater detail
in Section 2.5.

Task Scheduling. The Blink Scheduler manages task queues on the main thread to optimize system
responsiveness [16]. Figure 2 illustrates the scheduler architecture. Tasks are assigned semantic
labels (e.g., input, rendering) for context-aware prioritization. APIs abstract threading complexities,
allowing developers to schedule tasks based on behavior rather than platform-specific details.

In Blink, tasks are defined as base::OnceClosure objects, posted via TaskRunner::PostTask or
TaskRunner:: PostDelayedTask. Blink avoids general closure methods, using WTF::Bind for same-
thread tasks and CrossThreadBind for cross-thread tasks. Once posted, tasks run atomically until
completion. Task runners link tasks to execution contexts. FrameScheduler::GetTaskRunner ties
tasks to specific frames, enabling the scheduler to prioritize or freeze tasks based on frame state.
Specialized task runners manage tasks like garbage collection and compositing, each tied to specific
threads. Tasks are categorized by blink::TaskType, which determines scheduling priority. Input
tasks receive the highest priority, followed by compositor tasks when user gestures are detected.
Other tasks are deferred or throttled to maintain responsiveness and conserve power. The scheduler
also pauses tasks during synchronous dialogs or debugger breakpoints. Tasks that do not require
the main thread are offloaded using worker_pool::PostTask, utilizing a thread pool. Tasks needing
sequential execution should use worker_pool::CreateTaskRunner to ensure ordering, avoiding the
overhead of dedicated threads. Efficient task scheduling directly influences memory behavior, such
as garbage collector pauses, object allocation timing, and interactions with rendering subsystems.

Dom Input
timers Events

s | | loads | |Parsing
V8 is Google’s high-performance JavaScript {'"??Q:“éi"“‘} [Beg‘"Ffﬂmaﬁ] [Me"szgges} {ca""wai"}

and WebAssembly engine implemented in C++.
Its execution pipeline includes both interpreta-
tion and just-in-time (JIT) compilation for op- s« Dueues{ {Innm Tasks} [“g“;:‘“’] [ V8 Tasks ] [TwmerTaEkﬂ} {General TaskE}
timized performance. The compilation process e

begins with a custom parser that constructs an
abstract syntax tree (AST). This AST is then
converted into V8 bytecode by Ignition, V8’s
interpreter. Subsequently, TurboFan, the opti-
mizing compiler, compiles the bytecode into
machine code for execution. V8’s compilation infrastructure, previously referred to as Crankshaft,
consists of four core components. First, thebase compiler generates machine code quickly with min-
imal optimization, enabling fast startup. Second, the runtime profiler identifies frequently executed
hot code paths during program execution. Third, the optimizing compiler (TurboFan) recompiles hot
code with optimizations, with type feedback gathered during execution guiding the optimizations.
Finally, de-optimization supports speculative optimization by allowing fallback to baseline code

2.3 V8 JavaScript Engine

Scheduler APl = = =i m = = mim = - - - = -

Fig. 2. Overview of Blink task scheduler
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when assumptions made during compilation are invalidated at runtime. V8 dynamically optimizes
and re-optimizes code based on runtime behavior, enabling adaptive performance tuning that
balances execution speed with resource usage.

2.4 Component Interaction

Chromium follows a multi-process architecture for isolation and fault tolerance, separating browser
and renderer processes. The browser process handles Ul, system integration, and process control;
each renderer process manages web content. Each renderer maintains a global RenderProcess object
to store per-process state and facilitates communication with the browser. On the browser side, a
matching RenderProcessHost manages the renderer and serves as its IPC endpoint. Communication
occurs over Mojo, Chromium’s IPC framework, which offers cross-platform communication, an
Interface Description Language (IDL), and code-generated bindings. Within a renderer, each web
document maps to a RenderFrame, paired with a RenderFrameHost in the browser. RenderFrame
encapsulates document state and interacts with Blink; RenderFrameHost controls its lifecycle and
coordination. Frames are identified via routing IDs, unique within each renderer; globally unique
frame IDs combine the routing ID and RenderProcessHost. Visual content (e.g., images, input
regions) is managed by RenderWidget objects, paired with RenderWidgetHost in the browser. These
hosts coordinate rendering and input delivery. Finally, Mojo (or legacy IPC) channels are monitored
for failures. If a renderer crashes (e.g., via handle state), Chromium notifies affected tabs, replaces
the view with a placeholder, and spawns a new renderer upon reload.

2.5 Memory Management

Chromium employs a hybrid memory manage-

. C++ JSON = HTML == Python = YAML
ment approach combining a custom allocator, c Javasaript X LM R Other
PartitionAlloc, with tracing garbage collectors _ : E I o I§I
for higher-level subsystems (Blink and V8). "B M )
PartitionAlloc: Chromium’s Primary Al-
locator. PartitionAlloc is Chromium’s default ~ Fig. 3. Distribution of code across different program-
memory allocator, replacing standard alloca- ming languages within the Chromium project.
tion functions via a unified shim that intercepts malloc(), free(), new, and delete. It is optimized
to reduce fragmentation, isolate performance across subsystems, and enable memory safety features
such as pointer tagging and address pool partitioning. Note that, at the lowest level, all allocators
ultimately use malloc/new and related primitives, as the Chromium codebase is predominantly
C/C++ (Figure 3).

Memory is reserved in 2 MiB-aligned super pages, subdivided into fixed-size partition pages, which
are further divided into one or more slot spans made up of fixed-size slots. Allocation requests are
bucketed by size, and each bucket tracks active, empty, and decommitted slot spans. The fast path
allocates via freelist pointers embedded in slots; new pages are provisioned on demand, deferring
physical memory commitment until required.

Renderer processes leverage dedicated partitions to improve cache locality and security. The
LayoutObject partition is optimized for rendering data structures, Buffer stores script-exposed
containers like Vector and String, ArrayBuffer is dedicated to backing JS ArrayBuffer memory,
and FastMalloc is a general-purpose fallback allocator.

Garbage Collection. Chromium employs two major garbage collection (GC) techniques. Blink
uses Oilpan (C++), while JavaScript memory is managed by V8’s generational GC. Oilpan uses
a mark-and-sweep collector with optional compaction. Heap pointers are wrapped in GC-aware
smart types (Member, Persistent, etc.). It supports two GC styles: (a) conservative that scans native
stacks to find potential pointers, and (b)precise that runs at known safe points (e.g., event loop

5.5%

15.1%
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boundaries). It also supports three execution modes: (a) atomic that forces all execution to be
stopped while garbage collection is in progress, (b) incremental that interleaves execution with the
mutator via write barriers, and (c) concurrent that runs marking on background threads. During
marking, reachable objects are traced from root sets; in sweeping, destructors run and memory is
reclaimed. Pre-finalizers allow inter-object cleanup before destructor execution, which occurs on
the allocating thread to preserve C++ semantics. It also supports weak references, although they
may be elided if both referent and holder are collected in the same cycle.

V8, on the other hand, uses a generational, incremental mark-and-sweep collector optimized
for ephemeral objects. The heap is split into (a) young generation that is collected frequently via
minor GCs, and (b)old generation that is collected less often via major GCs and contains long-lived
objects. Objects typically start in “Eden”, a space where all newly allocated objects begin their
life in the young generation, and may be promoted after surviving cycles. Both spaces support
incremental and concurrent collection to minimize pause times. Relocation reduces fragmentation
but incurs pointer update overhead. As the old generation grows, promotion cost and GC latency
may increase, affecting responsiveness.

3 Object-Centric Instrumentation

In this section, we discuss the design of our instrumentation methodology, outlining the mechanisms
used to capture object life-cycle events with minimal runtime overhead and high semantic fidelity.

3.1 Instrumentation Pipeline

Our pipeline consists of three phases: instrumentation, execution, and analysis. In the first phase,
we compile Chromium with lightweight hooks to trace allocation, constructor, destructor, and
deallocation events using our LLVM [35]. We simultaneously extract static metadata such as
type layouts and symbol tables for annotating runtime events. In the second phase, we run the
instrumented binary on representative workloads. This produces detailed logs capturing object life
cycle events, types, and source locations. We also collect hardware-level data using Intel VTune,
including retired loads/stores, data addresses, and cache hit/miss statistics. The third phase analyzes
these logs. We correlate dynamic events with static metadata to infer object lifetimes, resolve type
boundaries, and eliminate redundant records. The resulting trace captures allocation/deallocation
patterns, object placement at page and cache levels, and fine-grained access behavior.
Instrumentation generates four raw data streams per component: allocations, dealloca-

tions, constructor calls, and destructor calls. We identify objects by matching constructor
invocations to preceding allocation events, i.e., constructor address falls within the allocated
region and occurs after the allocation. We resolve object types using a compile-time type_map
we retrieve its type and use the corresponding size to infer
boundaries. An object is considered valid if its boundary lies
within the allocated region. Resolved objects are added to the
Persistent

Destructed
3.2 Object Lifetime Taxonomy o .
We next present a taxonomy we use in our object lifetime anal- ‘
ysis. Recall that an object’s lifetime begins with the process
of memory allocation, followed by instantiation that occurs @
cated from a free pool of memory. Objects once created enter
the live state, which implies that they might be referenced in Fig- 4 Classification of object states.

that links runtime allocations to known types. For each object,

Instantiation
final analysis set.
explicitly through a constructor call. Memory is typically allo-
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Algorithm 1 Estimate Object Lifetimes

Require: Sorted Objects, Destructors

1: alive_addrs « {}

2: for all O € Objects do

3: O.death « o0; O.alive « oo
4 O.reuse « o0; O.cod « P
5: addr < O.addr; t;, <« O.ctor_ts
6: if addr € alive_addrs then
74
8
9

O.alive « tp — alive_addrs[addr]
O.death « O.reuse « t3,

: O.cod <R
10: else
11: alive_addrs[addr] « tp
12: end if
13: for all D € Destructors do
14: if D.addr = addr A D.cycle > tpA
D.ts < O.reuse then
15: tq « max(D.cycle)
16: O.death « tg
17: O.alive «—tg - tp
18: O.cod « D
19: end if
20: end for
21: end for

the future. We refer to the objects that are actively being referenced in any given execution interval
as in-use objects. The lifetime of an object ends upon destruction. This typically happens through
an explicit destructor call (graceful destruction) or via garbage collection. However, several objects
may persist or remain live throughout execution as their contexts and access patterns span several
different modules. If a live object has not been used for a long time, but has not been explicitly
destroyed, it could have entered a zombie state, which means that the object might no longer be
referenced. Objects may stay in the zombie state for a long time until they get picked up by the
garbage collector. In many instances, they might never be marked for garbage collection, artificially
inflating the memory consumed. Memory reclaimed via garbage collection might be reallocated
at a later point of time, followed by a constructor call, signifying the birth of a new object. It is
important to distinguish between a live object that was instantiated after a first-time allocation vs.
a reallocation to assess the effectiveness of the underlying memory allocation and management
scheme in limiting memory fragmentation. Figure 4 shows the object lifetime state transitions
described above.

Algorithm 1 estimates object lifetimes by tracking address reuse events and explicit
destructor calls, inferring the time interval between object allocation and its eventual disposal.
The algorithm operates on a sorted list of ob-
jects and a list of destructor events. For each
object, the algorithm initializes its lifetime pa-
rameters, including the death time, duration of
liveness, and reuse cycle. If the object’s address =
has been reused, the algorithm updates the ob-
ject’s lifespan based on the difference between ~— *¥%/\
its current and previous allocation times. Ifa
destructor call for the object is found, the death ;
time is updated to the destructor’s timestamp, " A
and the liveness duration is recalculated. The
object’s status is marked as either reused (‘R’)
or destroyed (‘D’) based on the presence of a
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Fig. 5. Overhead of object tracking instrumentation,
measured using the WebKit Speedometer suite.
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reuse event or destructor call. In the absence of a corresponding reuse event or destructor call,
an object is marked as persistent (‘P’). Post-memory access mapping using VTune, if a persistent
object exhibits no load or store activity, it is further classified as a zombie (‘Z’).

3.3 Instrumentation Overhead

Our instrumentation framework introduces minimal performance overhead. The inserted hooks,
state checkers, and supporting logic incur a only 1.1X runtime overhead relative to the baseline.
Enabling object data logging increases this overhead to an average of 1.9x. Figure 5 presents the
runtime performance impact, as measured using the WebKit Speedometer benchmark suite [17],
comparing a baseline Chromium build (‘Vanilla’) with two instrumented variants: one with logging
disabled (‘Instrumented (w/o logging)’) and another with logging enabled (‘Instrumented (logging)’).
In terms of binary size, the average size of shared object files increases from 526,274.24 bytes in
the baseline to 578,230.46 bytes in the instrumented build, an increase of approximately 9.8%. This
moderate code size overhead stems from the inclusion of logging metadata and support routines,
and remains acceptable within Chromium’s modular build architecture. Compile-time overhead is
similarly negligible. Using 8-thread parallel builds with gn and ninja on a system with an Intel
19-13900KS and 64 GB of memory, instrumentation extends total build time from ~12,262 to ~12,534
seconds (+2.2%).

To assess the feasibility of tracking dynamic object allocations in Chromium, we used Microsoft’s
Sysinternals VMMap [38] during the Speedometer 3.1 benchmark [17]. Chrome committed over
200 MB to the heap (50,006 pages), compared to 1.8 MB on the stack and 16 MB in mapped I/O
regions. This heap-heavy profile (>90%) reflects typical browser behavior driven by DOM structures,
JavaScript objects, and the V8 engine. These results, consistent with Chromium’s architecture,
confirm that our method captures the dominant memory usage patterns under realistic workloads.

3.4 Existing Memory Profiling Approach

Table 1 compares our approach against three representative tools native to the Chromium ecosystem.

MemorylInfra [4] provides timeline-based profiling through chrome://tracing, offering sub-
system level attribution via the MemoryDumpProvider interface. Components self-report their
allocations at configurable intervals, light dumps every 250ms and heavy dumps every 2 seconds.
While this approach integrates seamlessly with Chromium’s tracing infrastructure and imposes low
overhead, it requires manual implementation of dump providers for each subsystem and cannot
track individual object lifecycles or detect transient allocation patterns between snapshots.

Heap Profiler [7] captures per-allocation backtraces, enabling developers to attribute memory
consumption to specific call sites. This granularity comes at significant cost: storing complete stack
traces for every allocation increases memory overhead substantially, and type resolution requires
debug symbol availability. The profiler tracks allocations but not deallocations, precluding lifetime
analysis.

AddressSanitizer (ASan)[1, 48] and LeakSanitizer (LSan)[9] instrument memory accesses
to detect errors such as use-after-free, buffer overflows, and memory leaks. These tools excel at
identifying correctness bugs but do not characterize normal memory behavior, they report only
error events and leaked allocations at program termination, providing no visibility into object
lifecycles or access patterns during execution.

Our approach enables continuous per-object tracking with lifetime state transitions, automatic
module attribution without manual instrumentation, and the ability to detect inefficiencies like zom-
bie objects. The LLVM instrumentation pass requires no source modifications, enabling immediate
extension to new subsystems as Chromium evolves.
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Table 1. Comparison of memory profiling methods for object tracking in Chromium.

Dimension This Work MemorylInfra Heap Profiler ASan/LSan

Granularity

Tracking Unit Per-object lifecycle Per-subsystem Per-allocation backtraces ~ Per-allocation errors

aggregates

Event Types alloc, ctor, dtor, dealloc Periodic snapshots Allocation only Error events only

Type Resolution Compile-time type_map  Self-reported by provider = Debug builds only None

Temporal Data Continuous (RDTSC) Intervals (250ms/2s) Cumulative None

Overhead

Runtime 1.1X-1.9% 0.05-0.10% High (variable) ~2X

Memory 16 bytes/event Minimal High (backtraces) 2-3%

Binary Size ~0.098% Negligible Negligible ~2X

Developer Effort

Source Modifications None Required per subsystem  None None

New Component Support  Automatic Manual Automatic Automatic

MemoryDumpProvider

Build Integration LLVM pass Native Flag-based Flag-based

Relationship Mapping

Object-to-Module Automatic via IR Manual attribution Indirect (backtrace) None

Lifetime States Live/Zombie/Destroyed/ ~ None None Leaked only

Reallocated/Persistent
Reuse Tracking Address reuse chains None None None
Access Correlation VTune integration None None None

Table 2.

Summary of Browser Interaction Experiments

Experiment Type Affected Modules Description

OPENHOMEPAGE Static Navigation content, net, blink Load static homepage; baseline for memory use.
CLICKLINK Navigation content, blink, net Navigate via hyperlink; observe DOM teardown.
FILLFORM Form Interaction blink, v8 Enter text into forms; track transient JS objects.
MULTISTEPFORM Form Workflow blink, v8, content Submit multi-page form with validation/state.
AJAXLOAD Dynamic Content  v8, net, blink Trigger AJAX; monitor JS heap behavior.
NAVBACKFWD State Transition content,blink, nav. Use history API; test caching and DOM restore.
REFRESHPAGE Page Reload content, blink, v8 Full reload; analyze memory cleanup/reuse.
EXECJAVASCRIPT Scripting v8, devtools, blink Inject and run JS; stress JS engine.
COOKIEMANAGEMENT  Persistent State net, content, storage Read/write/delete cookies; test storage APIs.
DRAGDROP UI Interaction blink, ui, content Perform drag-and-drop; test UI/DOM updates.
HANDLEALERT Modal Handling content, blink, ui Interact with alerts; monitor UI thread.

TAKESS Rendering/Output  blink, viz, gpu, content  Capture page state; check rendering pipeline.
WEBGL2D 2D Graphics gpu, blink, viz, v8 Animate circles; simulate 2D graphics load.

MEMSTRESS10-60

Memory Stress

v8, blink, GC

Allocate JS objects; simulate memory pressure.

4 Experimental Methodology

To systematically observe and analyze Chromium’s' memory and object behavior under realistic
interaction patterns, we develop a suite of automated browser experiments using pytest and the
Selenium WebDriver. These experiments are representative of a range of user browser interactions,
covering both typical (e.g., page navigation, form interactions) and edge-case behaviors (memory

1Commit hash c61aa6fa0196356fda60dca670ed358c26f9fd3b
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stress tests), while capturing fine-grained object and memory traces. Table 2 summarizes the
scenarios we implement, including interaction types, targeted browser subsystems, and intended
stress patterns. All experiments are conducted on an Intel(R) Core(TM) i5-12900KS processor
(3.6 GHz), running Ubuntu 24.04. For microarchitectural and memory access analysis, we develop
a wrapper around Intel VTune Profiler [8] (version 2025.1.0, build 629847) that logs data via
Intel Sampling Drivers. To ensure consistency, we disable Address Space Layout Randomization
(ASLR), Intel’s Turbo Boost (frequency scaling), and hyper-threading, and set all CPU governors to
performance. Profiling results were exported with Data Address as the pivot, allowing us to map
memory accesses back to individual objects.

5 Evaluation

In this section, we present our observations and findings, highlighting key insights and affirmations
regarding Chromium’s memory management behavior and design choices.

5.1 Object Lifetime Characterization

Object Events. We begin by characterizing the number of key life cycle events - allocations,
deallocations, constructor invocations, and de-

structor invocations (Figure 6). Constructor ter
—e— Alloc
calls occur most frequently, outpacing alloca- 25 Doatec
—4&— Ctor
tions, which highlights a common pattern of 20 | =% Dor

in-place object memory reuse without fresh
memory allocation. This reuse is indicative of

# Operations

memory pooling strategies designed to reduce

allocator overhead. In contrast, we observe 05 ‘J
——a——p -

fewer deallocations than allocations, reflecting 00

deferred reclamation or remapping strategies F TS S LS EL PO F S
that avoid conventional free paths. Most no- & Oisé & <i‘§&2§ &\e&i@e‘i&o&f@% «
tably, destructor invocations are significantly 000*\@ & N §$C

lower than constructor calls. This discrepancy Experiments

arises from the widespread use of bulk memory

reclamation mechanisms (garbage collection), Fig. 6. Object allocation (Alloc), deallocation (Dealloc),
which eliminate the need for explicit destruc- constructor (Ctor), and destructor (Dtor) events across
tion. These trends collectively reveal that an different experiments shown in Table 2.

object life cycle is heavily optimized for performance and tailored to the demands of low-latency
rendering and high-throughput DOM manipulation, aimed for minimizing allocation, deallocation,
and destruction overhead.

Insight 1

Constructors consistently outpace allocations, while explicit deallocations are infrequent,
suggesting extensive in-place object reuse and the prevalence of deferred reclamation.

L
Recommendation 1

Developers should continue to focus on taking advantage of the reuse and deferred reclama-
tion model to avoid frequent allocation/deallocation overhead, particularly in performance-
critical code regions.
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To quantify the impact of memory pooling and deferred reclamation, we model two scenarios:

(1) No memory-pooling: every object construction directly invokes the allocator.
(2) No deferred reclamation: requires graceful destruction of an object upon its death.

We conservatively estimate cycle estimates based on PartitionAlloc [11], TCMalloc [26], and
Mallacc [32] as follows: average allocation latency of 150 cycles, deallocation latency of 100 cycles
on the fast path, a typical constructor cost of 300 cycles, and destructor cost of 200 cycles. These
values represent optimistic yet loosely bounded estimates suitable for comparative analysis. In
practice, slow-path allocations that involve OS system calls may incur ~500-5000 cycles, and
constructor/destructor costs vary substantially with object size, initialization complexity, and design
decisions. Our projections show that no memory pooling increases average allocator invocations
from 7,903 to 2.09M operations, equivalent to 519.5M additional cycles, slowing down execution by
240X. On the other hand, no deferred reclamation forces an additional 1.39M destructor calls on top
of 695,446 baseline calls, imposing a 3.33x overhead. Together, these results indicate that pooling
and deferred reclamation jointly avoid approximately 797.6 million wasted cycles in our execution
trace, underscoring their substantial role in amortizing allocation and reclamation costs.

Object Lifetime Distribution. Figure 7 shows .

the distribution of object lifetimes, averaged " — Trend (LOWESS)

across all experiments shown in Table 2. Clearly, 10°

the distribution exhibits a classic exponential
decay, with the vast majority of objects be-
ing ephemeral (i.e., having short life spans), a
pattern consistent with transient allocation be-

Number of objects

. . 10 M
havior commonly observed in large-scale ap- |

TN ¥
plications. This profile is strongly aligned with ' A -I‘Jr'nl
the performance assumptions of generational
garbage collection (GC) and validates the archi- 00 05 10 15 20 25
tectural choices in Chromium’s memory man- Object Lifetime (cpu tieks) e

agement subsystem (see Section 2.5). Fig. 7. Distribution of object lifetimes plotted on a
Following the initial decay, the lifetime distri- log-scaled y-axis. The red curve overlays a LOWESS-
bution enters a relatively flat phase, indicatinga  smoothed trend line to highlight the underlying pat-
cohort of objects with mid-range lifetimes. Most  tern and deviations across the lifetime spectrum.
of these objects are GPU-related objects such as
GrDirectContextPriv, GrShaderVar, and GrYUVATextureProxies that persist across draw passes or
video decode phases, encapsulating shader state and texture resources. Similarly, SkShader instances
live across paint operations and may be cached within rendering pipelines. Platform abstractions
like ScopedGObject is similar to a scoped_refptr for GObject types, with lifetimes scoped to UI com-
ponents or platform events. Utility classes such as ClearCollectionScope and SkAutoMutexExclusive
support scoped object management and synchronization. These objects are typically associated with
components that implement caching, session state, or similar persistent-but-not-global semantics.
Beyond this flat phase, the tail of the lifetime distribution becomes more erratic, exhibiting
greater variance and a pronounced spike,indicating the presence of highly persistent or effectively
zombie objects. Upon closer inspection, the dominant type in this region is PrefService (~39%),
defined in components/prefs/pref_service.h, which provides centralized access to user preference
data and policy-controlled settings. This is followed by GrGLGpu and GrGLAttribArrayState, which
together account for ~30% of objects in this region. Both originate from Skia’s OpenGL backend
(skia/src/gpu/ganesh/gl) and manage critical aspects of GPU state: GrGLGpu oversees rendering
operations and framebuffer configuration, while GrGLAttribArrayState tracks vertex attribute

Proc. ACM Meas. Anal. Comput. Syst., Vol. 10, No. 1, Article 20. Publication date: March 2026.



Shiny Objects: Object-Centric Characterization of Chromium 20:13

bindings. The next most frequent type is GURL (~20%), from Chromium’s core URL handling
library, which encapsulates parsed URLs and normalization logic. Finally, ContentSettingsPattern
appears frequently in this tail, serving as a key structure for mapping content permission rules
(e.g., cookies, JavaScript) to URL patterns.

Overall, the majority of persistent objects fall into three domains: Inter Process Communication
(mojo, ipc), URL parsing (e.g., GURL, URLPattern), and graphics state management (e.g., Skia and
cc/paint). A breakdown of object mortality at the tail shows that 96.10% are persistent/zombies,
while 3.74% are explicitly destroyed, and only 0.14% are reclaimed due to address reuse.

Chromium employs a mix of different memory management policies based on the locality
profiles and performance requirements of the subsystem - Blink/V8 leverage Mark & Sweep
and Generational Garbage Collection, Skia uses arena-based allocation, and browser services
employ scoped reference pointers alongside long-lived persistent global objects.

.

Recommendation 2

For future subsystems, developers should leverage garbage collection for dynamic language
bindings and object graphs, arenas for rendering, and scoped computation for services.

~

5.2 Object Size Heterogeneity

We categorize the memory footprint of objects based on allocation size, highlighting contrasting
behaviors of small and large object allocations.

Small Objects (1, 4, and 8 Bytes). The smallest observed objects are 1-byte, followed by 4-
byte and 8-byte allocations. These are typically low-level constructs used for management and
synchronization. Examples include AsanUnpoisonScope, SkSpinlock, SkSafeMath, SkOnce, All-
LABsAreEmpty, and DirtyBit. SkOnce (1-byte type), defined in SkOnce.h (Skia), supports thread-
safe one-time initialization. While useful, widespread use of SkOnce may lead to unnecessary
allocation churn if not carefully managed. Auditing such usage may reveal optimization oppor-
tunities. Most 8-byte allocations are smart pointers, primarily used for lifetime tracking and
shared ownership. Although expected in large codebases, the sheer volume of such pointers
implies non-trivial overhead from pointer-based indirection. These small objects, while light-
weight individually, contribute disproportionately to allocator overhead and heap fragmentation.
Their frequency compounds memory pollution when they are long-lived or never deallocated.
Large Objects (3,000-65,568 bytes). The
largest observed allocations, up to 65,568 bytes,
originate from SkSTArenaAlloc, Skia’s arena
allocator. Designed for high-throughput, low-
fragmentation allocation, SkSTArenaAlloc allo-
cates memory in exponentially increasing block

—e— Small
Medium
—— Large

Mean Lifetime (CPU cycles)

o & & Q « RN < N o < <
sizes following a Fibonacci sequence. SkSTAre- d O&S éf@e o@"&o o s NQOQ eg&"@} \%@OQ @»§ %o*@iggve
naAlloc begins with a user-provided block or a Oo&“\v & RO
default size and allocates new blocks as needed. ° Experiments
Block sizes grow as F,, = F,_; + F,,_, for min-
imizing block churn and deallocations. This Fig. 8. Geomean Object Lifetimes
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strategy benefits performance but may lead to internal fragmentation and memory waste, partic-
ularly when arena lifetime outlasts that of constituent objects. As a result, persistent or zombie
objects in these blocks cause significant memory retention. While smaller than SkSTArenaAlloc,
instances of SelectedKeywordView, which is responsible for "tab-to-search" UI functionality in the
browser’s location bar, appear frequently during a session. This class interprets user input like
"search google <query>" to trigger contextual actions. Frequent instantiation under interactive
workloads can compound memory pressure. We next examine the correlation between object size
and lifetime. As shown in Figure-8, across all operations, lifetimes of a small objects are dramatically
shorter than that of large objects. This aligns with the expectation that small objects are likely
transient or temporary data, while large objects are often related to persistent resources (like
graphic buffers, DOM Trees, Render Trees, etc.).

We further examine the state of the object in its life cycle according to the taxonomy described in
Section 3.2. We find that most small objects are gracefully deallocated via destructors or efficiently
reclaimed and reused by the garbage collector. Only a small fraction of these remain suspended in
an zombie state. In contrast, while large objects are also typically terminated through destructors,
their memory is not immediately reclaimed. This aligns with the principles of generational garbage
collection, where older objects are collected less frequently. Notably, even the youngest large objects
in Chromium tend to exhibit longer lifetimes than their smaller counterparts.

Insight 3

Most objects are small and ephemeral in their lifespan, dominating the allocation events,
but contributing minimally to total memory usage. However, a significant outlier of large
arena-allocated persistent objects exists, related to graphics buffers and rendering.

.

Recommendation 3

Developers should audit and minimize the allocation of small objects as they tend to have a
high allocator cost per byte, i.e., their overhead is mostly hidden in allocator metadata and
fragmentation, not raw memory usage.

.

Page Pollution. The primary challenge posed by persistent and zombie objects is not their sheer
count, but their spatial distribution across memory pages. These objects fragment memory, prevent-
ing full page reclamation and undermining the efficiency of memory reuse mechanisms. Figure-9b
illustrates that pages with a high number of zombies tend to contain small objects (averaging 1-10
bytes) while large zombies (>1 KB) are more likely to appear isolated or in low density.

High-density pages filled with numerous small, inactive objects exacerbate memory fragmen-
tation and complicate the process of reclaiming memory. Although individual objects may be
relatively small, their combined footprint can prevent page reuse or efficient compaction. Moreover,
these objects may persistently occupy cache lines or TLB entries, contributing to broader system
inefficiencies. Consequently, these pages are more challenging to evict or reuse without precise
object-level tracking. In contrast, low-density pages containing large Zombie objects serve as
clear targets for coarse-grained reclamation. Since these pages primarily host a few bulky, dead
allocations, they can be efficiently identified and released through page-level mechanisms, provided
that allocation tracking metadata supports this functionality. This observation motivates the design
of tiered cleanup strategies: aggressively compact or clear high-density pages of small Zombies,
while directly deallocating low-density pages with large ones.
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Fig. 9. (a) Page composition by object states (R: Reallocated, Z: Zombie, D: Destroyed, P: Persistent), normal-
ized column-wise. (b) Zombie count and mean size per page.

Further analysis reveals a structural impediment to effective memory reclamation. Figure-9a
shows that zombie objects frequently coexist with objects that were instantiated on reclaimed
memory (i.e., pages with R+Z status in the figure). This co-residency hinders the ability of garbage
collectors or memory managers to reclaim entire pages, even when parts of them are reallocated
and assigned to newly created objects. While majority of objects can be reclaimed and reallo-
cated efficiently, zombie objects prevent the wholesale deallocation of these pages, resulting in a
phenomenon we term page pollution by zombies.

This effect is particularly pronounced for small zombie objects, which, despite their insignif-
icant individual footprint, scatter across memory and become interleaved with live allocations.
Consequently, memory managers are compelled to adopt a partial reuse model, where page reuse
is constrained by the liveness of the smallest objects. This fragmentation severely restricts opti-
mizations such as huge-page coalescing (where the operating system combines smaller memory
pages into larger huge pages to improve performance by reducing page table overhead), OS-level
page release, and slab reclamation. It is worth noting that this distribution holds across vari-
ous workloads, reinforcing the conclusion that Zombie behavior is a structural consequence of
Chromium’s memory semantics, rather than a mere workload-specific anomaly. This suggests that
runtime systems could benefit from identifying polluted pages as a unit of optimization, whether
for eviction, migration, or triggering garbage collection, without the need for comprehensive
program analysis. Effective mitigation may require isolating short-lived or inactive allocations,
potentially through better segregated allocation pools or lifetime-aware object placement strategies,
to minimize zombie-liveness interference and enhance page-level cleanup potential.

Small zombie objects can also contribute to spatial fragmentation, preventing entire memory
pages from being reclaimed even if most of their contents are dead, and interfering with
system-level optimizations such as huge page coalescing.
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Fig. 10. Affect of size and lifetime-aware object pooling on Memory access rates and total reclaimable pages
per size bucket.

Recommendation 4

Use lifetime-aware placement to ensure small objects that have the potential to become
zombies are contained within a small subset of pages and employ lifetime-aware arena
partitioning to prevent long-lived zombie objects from pinning entire blocks in memory.

To evaluate the impact of size and lifetime-aware object pooling, we model a configuration
in which objects belonging to the same size class and exhibiting similar lifetimes are pooled
together to enable batched reclamation. We project both allocation overhead and memory cost
under progressive size promotion, where smaller objects are aggregated into larger buckets. As
shown in Figure 10, object pooling and migration markedly alter memory activity (measured in
memory references per second) across size categories. As smaller objects (1-4 KB) are pooled and
promoted into larger buckets, we observe a pronounced shift in memory activity toward the 16 KB
+ size range. Although the relative change for very small objects (0-64 B) appears modest, their
contribution to reclaimable pages is substantial, as reflected in the right-hand panel of the figure,
highlighting the disproportionate effect of small-object pooling on overall memory reclamation
efficiency.

5.3 Object Activity Characterization

Live vs In-Use. Figures 11a, 11b, and 12a present the number of live and in-use objects, and their
types, along with the corresponding number of pages and L3 cache lines containing the objects, as
observed across each experiment. We make several observations.

First, even though tens of millions of allocations are made throughout execution, the number
of live objects at any given point in time is a small fraction of those allocations, mostly capped at
tens of thousands of objects across the different experiments. The number of in-use objects is even
smaller, hovering over a few hundreds to thousands of objects at any given point. This suggests
that most code regions involve computations featuring a limited set of objects and the liveness of
most objects do not extend beyond short time windows. Second, even though a sizeable number
of objects remain live at any given point in time, they typically map to only a small set of pages
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Fig. 11. (a) Live Objects, Pages, and LLC Lines. (b) Live vs In-Use Data Types.

and cache lines, suggesting significant compaction enabled by the memory allocators coupled with
high locality.

In fact, resident page counts vary by at most £10% (0.5-1.5K pages) and the working set size
typically does not exceed the capacity of the L1 cache. This is confirmed in Figure 12b that shows
that most of the accesses are L1 hits across all of the experiments. In some cases, particularly during
the initialization phase, we observe that objects contend for the same L1 cache set, resulting in
conflict misses, although this behavior is not observed once steady state is reached. Third, the
number of distinct C++ data types of objects that are live or in-use are an order of magnitude
smaller than the actual number of objects that are live or in-use, suggesting that multiple objects
that belong to the same data type are typically used at once. This also aligns with the expectation
that developers typically tend to work with a small set of objects and data types at any given point
in time, despite the sheer number of classes and complex data types defined across all the modules
and subsystems in Chromium. This behavior can be observed in Figure 11b.

Fourth, all runs exhibit a rapid increase in the number of live objects within the first 10-20 ps,
following the initial rise, live-object counts stabilize and persist for 40-80us. This expected behavior
is cause by the initial setup procedure where lots of objects are created to support different modules
of Chromium as discussed in Section-2. A secondary spike in live object counts is observed in most
experiments between 35-38us. This corresponds to Chromium’s delayed asynchronous initialization
strategy, where non-critical background tasks (e.g., metrics collection, service startup) are deferred
to avoid blocking the main UI thread during early execution. AJAXLOAD and WEBGL2D do not
exhibit this behavior, as the experiment duration is insufficient to reach the deferred initialization
phase. In OPENHOMEPAGE, the dominant scale of the initial allocations visually obscures the spike.
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Fig. 12. (a) In-Use Objects, Pages and LLC Lines. (b) Ratio of L1, L2, L3 Hit and DRAM bound Loads. Total
accesses: L1 hit + L1 miss + FB hit.

Insight 5

Despite millions of allocations, the active working set of objects is very small and typically
fits within the L1 cache. These objects belong to a small set of distinct high-level data types,
indicating that developers refrain from working with too many objects and data types at
once.

.

Recommendation 5

Developers should continue to carefully optimize the active working set to be cache-friendly.

e

At ~5.07x107 ps, OPENHOMEPAGE exhibits a sharp drop of ~34K live objects. These objects originate
due to asynchronous iterable bindings implemented by the Blink engine for JavaScript. The objects
serve as V8-backed wrappers and iterators bridging C++ and JavaScript asynchronous control
flows. Their coordinated destruction via C++ destructors indicates the completion of a major
asynchronous rendering phase. This drop aligns with the browser having fully loaded, suggesting
that associated tasks, e.g., stream readers or worker-based iterators, are shutting down.

Most Chromium tasks are characterized by a rapid increase in the number of live objects,
followed by a period of stabilization, and a secondary spike to delayed asynchronous
initialization of objects from background non-critical threads.
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Recommendation 6

Developers should manage deferred asynchronous initialization carefully so as to avoid
sharp spikes in memory usage during performance/user experience-critical phases.

L
Recommendation 7

System designers should employ phase-aware memory management policies by using tight
compaction and short-lifetime arenas during startup, transitioning to steady-state garbage
collection tuning after stabilization, and triggering asynchronous cleanup post-deferred
initialization phase.

5.4 Object-Centric Characterization of CPU microarchitectural Behavior

Software performance depends not only on the algorithmic complexity, but on how predictably it ex-
ercises the underlying parchitectural optimizations. In Figure 13, we examine two key parchitectural
metrics that capture these behaviors: branch mispredictions per kilo instructions (MPKI) and heavy
operations per kilo instructions (HPKI). MPKI quantifies branching entropy, he extent to which
the processor’s branch predictor fails to anticipate control-flow direction, causing pipeline flushes
and front-end stalls. HPKI, on the other hand, reflects backend inefficiency, including cache-miss
penalties and latency from complex arithmetic or memory-dependence chains. The particular Intel
performance counter measuring heavy operations accounts for complex x86 instructions that break
down into more than one micro-operation, which are typically common for pointer arithmetic
instructions that employ register-memory addressing mode.

Traditional code-centric analyses study MPKI and HPKI at the level of individual algorithms or
functions, seeking to restructure code or scheduling logic for improved predictor friendliness or data
reuse. In contrast, we examine these effects from an object-centric perspective, and in particular,
inspect how MPKI and HPKI vary when specific object types are accessed during Chromium’s
execution. This approach decouples performance from static code structure and instead relates it
to dynamic object behavior, e.g., how data encapsulation and event-Our analysis indicates that this
perspective exposes architectural hotspots.

First, we observe that accesses within the GPU layer (e.g., GrResourceAllocator) occur during
phases of higher relative branching entropy (and thus higher branch MPKI) due to heavy use of
pointer indirection and complex control flow in state-dependent checks (e.g., those required for
resource eviction and synchronization). GrResourceAllocator, in particular, incorporates dynami-
cally sized containers such as hash maps and live interval-tracking structures that not only entail
complex control flow, but also irregular memory access patterns with poor locality. This memory-
bounded nature of operations involving objects of the type GrResourceAllocator is also reflected in
it high HPKI. Second, Ul-related object types such as BrowserFrame are typically vulnerable to
poor control flow predictability. This is because of their event-driven design that relies heavily on
deeply nested virtual dispatches (e.g., browser_view_->browser()->profile()->GetProfileType()) that
are often part of conditionals. Thus, accesses to BrowserFrame typically occurs during phases of
severely elevated branch MPKI, which is a direct result of the branch history table being polluted
from heterogeneous and unpredictable event sequences. Furthermore, nesting of operations (in this
case, virtual dispatches that typically entail a chain of complex call instructions that decompose
into two or more micro-operations) automatically implies the presence of long dependency chains
and hence low instruction-level parallelism, resulting in low backend efficiency as well. Third,
objects pertaining to the Ul layer (e.g., ToolbarActionView, ContentSettinglmageView, Tab) also
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Fig. 13. Comparison of top object types exhibiting high branch misprediction rates (MPKI, left) versus heavy
operation overhead (HPKI, right) across 12 experimental workloads.

suffer from conditional branch explosion from combinatorial state spaces, i.e., numerous feature
flags, permissions, and transient view states resulting in deeply nested conditional hierarchies.

Notably, these inefficiencies arise from the very abstractions that make Chromium’s software
architecture expressive and modular. Event-driven designs, virtual dispatch hierarchies, and dynam-
ically typed container patterns (e.g., hash maps and ref-counted handles) all optimize for software
flexibility, composability, and algorithmic efficiency, yet they implicitly trade off parchitectural
predictability. Event-driven control introduces temporal irregularity that disrupts the branch pre-
dictor’s history tables; virtual dispatch incurs indirect branches that the branch predictor cannot
correlate across dynamic call targets; and hash-based containers, while reducing algorithmic time
complexity, produce pointer-chasing access patterns with high cache-miss penalties and weak spa-
tial locality. In essence, these abstractions optimize the big-O profile but degrade pipeline stability,
cache efficiency, and branch predictability.

Reworking these abstractions to achieve the best of both worlds requires a shift from purely algo-
rithmic optimization toward parchitecturally informed abstraction design. For example, employing
flat hash maps (Google’s Swiss Tables) will allow us to retain O(1) access while improving cache
contiguity. Similarly, replacing polymorphic dispatch with table-driven routing to convert indirect
branches into direct indexed lookups, where possible, and batching or amortizing asynchronous
event handling to align with predictable temporal windows, could allow the software to main-
tain its architectural abstraction boundaries while still exploiting the underlying parchitectural
optimizations.

Software abstractions that prioritize flexibility and algorithmic efficiency such as event-
driven designs, virtual dispatch, and hash-based containers, could potentially introduce
branching entropy and backend inefficiencies that fundamentally limit parchitectural pre-
dictability and throughput.
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Recommendation 8

20:21

Reconcile abstraction and performance by redesigning data structures and control paths for
predictable access and locality using flat, contiguous containers, table-driven dispatch, and
batched event handling to align software modularity with parchitectural efficiency.

5.5 Optimization Workflow
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Fig. 14. Symptom-driven optimization workflow synthesizing insights from object lifetime, size heterogeneity,
spatial placement, and parchitectural characterization. The diagnostic tree enables systematic identification
of memory inefficiencies and maps them to actionable optimization opportunities.

Based on our insights and recommendations, we propose an optimization workflow for object-
centric code optimizations in large-scale, object-oriented software systems. This workflow adopts a
symptom-driven diagnostic approach, mapping observable metrics to actionable interventions. We
identify the following five primary symptom categories, each leading to a decision tree depicted in

Figure 14-

(1) High allocation churn, measured as combined allocation and deallocation events per second,
indicates excessive allocator activity traceable to insufficient object reuse. The diagnostic
process begins by examining constructor-to-allocation ratios: when constructors consistently
exceed allocations, the subsystem can leverage in-place reuse or deferred reclamation, and
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further optimization should focus on extending these patterns to additional object types.
When allocations dominate, optimization should align memory management strategies with
subsystem semantics by adopting module-specific policies such as arena allocation or memory
pooling (Insights 1, 2).

(2) Excessive heap growth, observable as committed bytes increasing over time, often stems
from small-object dominance rather than large allocations. In these cases, overhead accumu-
lates in allocator metadata and internal fragmentation rather than application data, resulting
in elevated per-byte costs that are not immediately apparent from aggregate memory statis-
tics. Optimization should focus on auditing high-churn small allocations and consolidating
objects with similar size classes and lifetimes into dedicated pools (Insight 3).

(3) Low page utilization, quantified as the ratio of live bytes to committed bytes, reflects
inefficient page-level memory use caused by zombie objects that prevent wholesale recla-
mation. The spatial distribution of zombies determines the appropriate intervention: small
zombies scattered across many pages require lifetime-aware placement and arena partitioning
to concentrate them into reclaimable regions, whereas large isolated zombies occupying
low-density pages are amenable to coarse-grained page reclamation through direct OS hints
(Insight 4).

(4) parchitectural inefficiency, measured via hardware performance counters as misses per
kilo-instruction (MPKI) or heavy operations per kilo-instruction (HPKI), arises from either
working set overflow or abstraction-induced unpredictability. The diagnostic process first
determines whether the active working set exceeds L1 cache capacity; if so, optimization
should target improved locality through cache-friendly data layout and access pattern re-
structuring. If elevated miss rates persist despite a reasonably sized working set, the cause is
typically branch entropy introduced by event-driven designs, virtual dispatch hierarchies, or
pointer-chasing data structures. These inefficiencies may respond to abstraction redesign
using flat containers, table-driven dispatch, and batched event handling (Insights 5, 7).

(5) Transient memory spikes, characterized by the ratio of peak to steady-state memory
consumption, indicate phase-correlated memory pressure occurring during startup, asynchro-
nous initialization, or steady-state transitions. Each phase benefits from distinct interventions:
startup spikes respond to tight compaction and short-lifetime arenas; initialization-phase
spikes require careful scheduling of deferred background tasks to avoid overlapping with user-
facing activity; and steady-state fluctuations indicate opportunities for garbage collection
tuning to align reclamation with natural idle periods (Insight 6).

Quantifying Optimization Potential.

Our analysis identifies three optimization axes with quantifiable impact. First, existing pooling
and deferred reclamation strategies already save approximately 797.6M cycles per session by
reducing allocator invocations from 2.09M to 7,903 operations and eliminating 1.39M unnecessary
destructor calls. Disabling these mechanisms would result in significant slowdowns, with 240x
and 3.33x reductions, respectively (see Section 5.1, ‘Object Events’). Second, lifetime-aware object
placement offers additional memory efficiency gains. Currently, zombie objects co-reside with
live allocations on the majority of partially occupied pages, preventing wholesale reclamation
even when the effective utilization is low. By segregating short-lived small objects (under 64
bytes) into dedicated arenas, we can enable page-granularity reclamation. This reduces committed
memory and improves TLB efficiency by reducing the number of resident pages and increasing
the eligibility for huge-page promotion (see Section 5.2, ‘Page Pollution’). Third, parchitectural
optimizations targeting high-MPKI object types, particularly GPU resource managers and event-
driven UI components, present opportunities for measurable improvements in IPC. Replacing
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virtual dispatch chains with table-driven routing eliminates indirect branch mispredictions, while
substituting pointer-chasing hash maps with flat containers improves cache line utilization and
reduces the number of heavy operations (see Section 5.4). Collectively, these optimizations address
distinct bottlenecks: memory pooling reduces allocation costs, lifetime-aware placement minimizes
reclamation costs, and abstraction redesign restores parchitectural efficiency lost due to increasing
software modularity.

6 Related Work

In this section, we discuss related work spanning code instrumentation, memory profiling, and
browser characterization. Table 3 summarizes key characteristics across representative techniques,
situating our lightweight, lifetime-aware approach within the broader landscape.

Table 3. Summary of related work on code instrumentation, memory profiling, and browser characterization.

Method Category Technique Granularity Limitation

Pin [36] Dynamic Binary Register re-allocation, shadow Instruction  High runtime overhead
mem.

Valgrind [42] Dynamic Binary Runtime framework Byte Prohibitive for production

DynamoRIO [22] Dynamic Binary Kernel-level coverage Instruction ~ Complex deployment

DTrace [21] Process Probes Zero-overhead probes Function Limited active granularity

ASan [48] Compile-time Shadow memory transforms  Byte Error detection only

MSan [49] Compile-time Bit-precise shadow prop. Bit High overhead

MemorylInfra [4] Runtime Profiling MemoryDumpProvider- Subsystem  No object detail; manual inst.
callbacks

PROMPT [51] Profiling Framework Extensible multi-type Configurable Generic; not browser-specific

Resurrector [50] Object Lifetime Alloc/dealloc tracking Object Not browser-scale

SWAT [24] Leak Detection Adaptive statistical Statistical May miss infrequent leaks

CRAMM [52] GC Profiling Per-process ref. tracking Reference JS heap only

DMon [34] Selective Profiling ~ Resource-bounded Cache-level  Selective, not comprehensive

DevTools [10] JS Heap Profiling V8 heap snapshots JS Object No native allocations

WebCore [53] Hardware Opt. SRU + Browser Engine Cache Architecture Hardware modification req.

Kanev et al. [31] Datacenter Profiling Warehouse-scale analysis System Server-focused

Musleh et al. [37]  Mobile JS Phase-specific profiling Phase JS-centric

Ogasawara [43] Server JS Runtime library profiling Function Server-side only

Hwang et al. [27]  Mobile I/O Storage pattern analysis 1/0 I/0O-focused

Radhakrishnan [45] Browser-HW Multi-browser profiling System No optimization framework

6.1 Code Instrumentation.

Code instrumentation is a common technique for logging, tracing, profiling, and optimization [28,
44, 47]. Instrumentation can occur during compilation (source-level) or execution (binary-level) [20,
42, 54]. Dynamic binary instrumentation frameworks like Pin [36] and Valgrind [42] enable runtime
analysis without source code access, achieving efficient instrumentation through techniques like
register re-allocation and shadow memory support. For kernel-level instrumentation, DynamoRIO
extensions [22] provide comprehensive coverage of system-level code that browsers interact with
during rendering and JavaScript execution. Production system instrumentation through sampling
based approaches [5] and zero overhead frameworks like DTrace [21] help profile complex systems
with minimal performance impact. Compile-time instrumentation offers advantages when source
code is available. AddressSanitizer [48], widely used in Chromium development, achieves only
73% average slowdown for comprehensive memory error detection through efficient compile-
time transformation. MemorySanitizer [49] demonstrates similar benefits with 2.5x execution
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overhead using bit-precise shadow memory propagation. A frequently used alternative involves
instrumenting standard libraries instead of binaries, which enhances logging stability and is effective
for micro benchmarks or small programs. However, it struggles in large projects due to possibility
of self-triggering and results in execution pollution [39]. This method is unsuitable for Chromium,
which overrides standard library calls via custom wrappers, including memory management (see
Section 6.2). Hence, we implement compile-time instrumentation directly in the target binary.

6.2 Memory Profiling.

Chrome provides a timeline-based profiling tool called Memorylnfra [4], accessible via chrome: //
tracing. It offers coarse-grained visibility into memory usage across browser components but
lacks object-level detail within individual modules. To log data, developers must register their
components by implementing a MemoryDumpProvider and integrating it with the memory dump
infrastructure. Modern profiling frameworks like PROMPT [51] provide extensible support for
multiple profiling types including memory-dependence, value-pattern, object-lifetime, and points-
to analysis with dramatically reduced implementation effort. Object lifetime profiling [50] enables
optimization of real-world programs by tracking allocation and deallocation patterns. Shadow
memory techniques [41] enable efficient metadata tracking by maintaining a shadow copy of
application memory, forming the foundation for modern memory profilers and checkers. Memory
leak detection in production environments requires low-overhead approaches. SWAT [24] uses
adaptive statistical profiling to achieve less than 5% overhead, making continuous leak detection
practical for live systems. For garbage-collected environments like JavaScript engines, CRAMM
[52] demonstrates techniques for gathering per-process reference information at approximately
1% overhead. Selective profiling approaches like DMon [34] achieve only 1.36% average overhead
through resource-bounded methodology that focuses on specific cache levels or memory based on
identified bottlenecks. While tools like Chrome’s DevTools Memory tab [10] provide insights into
JavaScript heap usage, they often lack detailed information about native memory allocations and
object-level granularity. This limitation hampers the ability to diagnose memory bloat and leaks
effectively.

6.3 Hardware Optimizations for Browsers.

Browser workloads exhibit unique microarchitectural characteristics that differ fundamentally from
traditional server applications. Microarchitectural profiling reveals that computation, rather than
networking, is the primary bottleneck in modern browsers [30], with significant stress on instruction
caches and memory hierarchies. Zhu et al. [53] proposed WebCore, a processor architecture
optimized for mobile web workloads, incorporating a Style Resolution Unit (SRU) and Browser
Engine Cache. Combined, these yield 22.2% performance gain, 18.6% energy savings, and up to
10x acceleration in specific tasks. Peters et al. [40] profiled browser activity on heterogeneous
multi-processing (HMP) systems, breaking down CPU time and energy per thread and showing that
DVES, thread allocation, and power gating can significantly reduce power use. Hwang et al. [27]
analyzed five mobile browsers, finding browsing to be write-intensive with 11.7x write amplification.
Over 50% of I/Os relate to metadata/journaling, and 70% of Chrome’s storage volume resides in
SQLite. 57% of writes are synchronous, making up 68% of total write volume. Kanev et al. [31]
profiled warehouse-scale computers running web-facing workloads, identifying a "datacenter tax"
comprising nearly 30% of cycles from instruction cache misses and memory hierarchy stress. Web
search workload analysis [29] reveals how web applications stress memory hierarchies differently
than traditional server workloads, with implications for cache-conscious optimization. TailBench
[33] provides comprehensive methodology for characterizing latency-critical web applications
including cache behavior and memory hierarchy stress patterns. Musleh et al. [37] analyzed
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JavaScript workloads on mobile, emphasizing memory pressure and phase-specific variability in
execution due to inline caching and type predictability. They found that targeted optimizations
for predictable phases outperform generalized techniques. Analysis of server-side JavaScript [43]
reveals that 47.5% of CPU time is spent in C++ runtime libraries, highlighting cache and memory
hierarchy challenges in engine implementations. GreenWeb [6] demonstrates how JavaScript
patterns affect microarchitectural behavior including cache performance and energy consumption.
Radhakrishnan [45] found major browsers (IE, Firefox, Chrome) underutilize system hardware
across configurations, indicating inefficiencies in browser-hardware integration.

7 Conclusions

We present an empirical characterization of object allocation, lifetime, and memory behavior in
Chromium using a lightweight, non-intrusive profiling framework. Our analysis across diverse
workloads shows that while Chromium performs tens of millions of allocations, the number of live
and in-use objects at any point remains small and exhibits strong spatial locality. These objects are
densely packed into a limited number of pages and dominated by a small number of C++ types,
reflecting compact and type-local runtime behavior.

We also observe that persistent and zombie objects, though limited in number, contribute
disproportionately to memory fragmentation by hindering full-page reclamation. Small long-lived
objects are especially prone to polluting memory, while large objects managed via arenas risk
internal fragmentation when arena lifetimes exceed object lifetimes. These findings highlight
structural challenges in memory reuse and point to the potential value of intent-aware memory
management strategies in large-scale, event-driven systems.
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