Check for
updates

R DIGITAL Assaciaionfoe
acvyel® 155 Ry T @m open)
{5 Latest updates: hitps://dl.acm.org/doi/10.1145/3786775

RESEARCH-ARTICLE
Membrane: Accelerating Database Analytics with DRAM-Based PIM
Filtering and Schema Denormalization

AKHIL SHEKAR, University of Virginia, Charlottesville, VA, United States

KEVIN P GAFFNEY, University of Wisconsin-Madison, Madison, WI, United States
MARTIN PRAMMER, Carnegie Mellon University, Pittsburgh, PA, United States
KHYATI KIYAWAT, University of Virginia, Charlottesville, VA, United States
LINGXI WU, University of Virginia, Charlottesville, VA, United States

HELENA CAMINAL, Cornell University, Ithaca, NY, United States

View all

Open Access Support provided by:
University of Wisconsin-Madison
University of Virginia

Carnegie Mellon University

Cornell University

PDF Download

};3 3786775.pdf

< 01 February 2026
Total Citations: 0
Total Downloads: 95

Accepted: 07 December 2025
Revised: 24 November 2025
Received: 14 September 2025

Citation in BibTeX format

ACM Transactions on Architecture and Code Optimization

https://doi.org/10.1145/3786775
EISSN: 1544-3973

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3786775
https://dl.acm.org/doi/10.1145/3786775
https://dl.acm.org/doi/10.1145/contrib-99661792005
https://dl.acm.org/doi/10.1145/institution-60021918
https://dl.acm.org/doi/10.1145/contrib-99659902201
https://dl.acm.org/doi/10.1145/institution-60032179
https://dl.acm.org/doi/10.1145/contrib-99659285800
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/contrib-99660996541
https://dl.acm.org/doi/10.1145/institution-60021918
https://dl.acm.org/doi/10.1145/contrib-99659915966
https://dl.acm.org/doi/10.1145/institution-60021918
https://dl.acm.org/doi/10.1145/contrib-99659275898
https://dl.acm.org/doi/10.1145/institution-60007776
https://dl.acm.org/doi/10.1145/3786775
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60032179
https://dl.acm.org/doi/10.1145/institution-60021918
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/institution-60007776
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3786775&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3786775&domain=pdf&date_stamp=2025-12-30

Membrane: Accelerating Database Analytics with DRAM-Based PIM
Filtering and Schema Denormalization

AKHIL SHEKAR, Dept of Computer Science, University of Virginia, Charlottesville, United States
KEVIN GAFFNLEY, Dept of Computer Science, University of Wisconsin-Madison, Madison, United States
MARTIN PRAMMER, Dept of Computer Science, Carnegie Mellon University, Pittsburgh, United States
KHYATI KIYAWAT, Dept of Computer Science, University of Virginia, Charlottesville, United States
LINGXI WU, Dept of Computer Science, University of Virginia, Charlottesville, United States

HELENA CAMINAL, Cornell University, Ithaca, United States

ZHENXING FAN, University of Virginia, Charlottesville, United States

YIMIN GAO, Dept of Computer Science, University of Virginia, Charlottesville, United States

ASHISH VENKAT, Dept of Computer Science, University of Virginia, Charlottesville, United States
JOSE MARTINEZ, School of Electrical and Computer Engineering; Cornell University, Ithaca, United States
JIGNESH PATEL, Dept of Computer Science, Carnegie Mellon University, Pittsburgh, United States
KEVIN SKADRON, University of Virginia, Charlottesville; United States

In-memory database query processing frequently involves substantial data transfers between the CPU and memory, leading
to inefficiencies due to the Von Neumann bottleneck. Processing-in-Memory (PIM) architectures offer a viable solution to
alleviate this bottleneck. In our study, we employ a commonly used software approach that streamlines JOIN operations
into simpler selection or filtering tasks via pre-join denormalization, thereby making the query processing workload more
amenable to PIM acceleration. This research explores the DRAM design landscape to evaluate how effectively these filtering
tasks can be executed efficiently across the DRAM hierarchy and their effect on overall application speedup. We also find that
operations such as aggregates are better executed on the CPU than on PIM. Thus, we propose a cooperative query processing
framework that capitalizes on both CPU and PIM strengths, where (i) the DRAM-based PIM block, with its massive parallelism,
supports scan operations while (ii) CPU, with its flexible architecture, supports the rest of the query execution. This allows us
to utilize both PIM and CPU where appropriate and prevent dramatic changes to the overall system architecture.

With these minor modifications to the system architecture and a customized version of the DuckDB database to integrate
offloaded scan operations into the CPU-side processing, our methodology enables accurate end-to-end performance evaluations
using established analytical benchmarks such as TPC-H and the Star Schema Benchmark (SSB). Our findings show that this

Authors’ Contact Information: Akhil Shekar, Dept of Computer Science, University of Virginia, Charlottesville, Virginia, United States; e-mail:
as8hu@virginia.edu; Kevin Gaffney, Dept of Computer Science, University of Wisconsin-Madison, Madison, Wisconsin, United States; e-mail:
kpgaffney@wisc.edu; Martin Prammer, Dept of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States;
e-mail: mprammer@andrew.cmu.edu; Khyati Kiyawat, Dept of Computer Science, University of Virginia, Charlottesville, Virginia, United
States; e-mail: vyn9mp@virginia.edu; Lingxi Wu, Dept of Computer Science, University of Virginia, Charlottesville, Virginia, United States;
e-mail: Iw2ef@virginia.edu; Helena Caminal, Cornell University, Ithaca, New York, United States; e-mail: hc922@cornell.edu; Zhenxing Fan,
University of Virginia, Charlottesville, Virginia, United States; e-mail: fjy3ws@virginia.edu; Yimin Gao, Dept of Computer Science, University
of Virginia, Charlottesville, Virginia, United States; e-mail: yg9bq@virginia.edu; Ashish Venkat, Dept of Computer Science, University of
Virginia, Charlottesville, Virginia, United States; e-mail: venkat@virginia.edu; Jose Martinez, School of Electrical and Computer Engineering,
Cornell University, Ithaca, New York, United States; e-mail: martinez@cornell.edu; Jignesh Patel, Dept of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, United States; e-mail: jignesh@cmu.edu; Kevin Skadron, University of Virginia, Charlottesville, Virginia,
United States; e-mail: skadron@virginia.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 1544-3973/2025/12-ART

https://doi.org/10.1145/3786775

ACM Trans. Arch. Code

https://orcid.org/0009-0005-0432-9414
https://orcid.org/0000-0002-3273-7694
https://orcid.org/0009-0000-4348-236X
https://orcid.org/0000-0001-6535-8220
https://orcid.org/0000-0001-6427-6709
https://orcid.org/0000-0002-2052-8107
https://orcid.org/0009-0008-3346-2136
https://orcid.org/0009-0002-9526-6954
https://orcid.org/0000-0003-1959-8463
https://orcid.org/0000-0001-5451-5681
https://orcid.org/0000-0003-3653-2538
https://orcid.org/0000-0002-8091-9302
https://orcid.org/0009-0005-0432-9414
https://orcid.org/0000-0002-3273-7694
https://orcid.org/0009-0000-4348-236X
https://orcid.org/0000-0001-6535-8220
https://orcid.org/0000-0001-6427-6709
https://orcid.org/0000-0002-2052-8107
https://orcid.org/0009-0008-3346-2136
https://orcid.org/0009-0002-9526-6954
https://orcid.org/0000-0003-1959-8463
https://orcid.org/0000-0001-5451-5681
https://orcid.org/0000-0003-3653-2538
https://orcid.org/0000-0002-8091-9302
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786775

2 « A Shekaretal.

novel mapping approach improves performance, delivering a 5.92x/6.5x speedup (TPCH/SSB) compared to a traditional
schema and 3.03 — 4.05x speedup compared to a denormalized schema with 9 — 17% memory overhead, depending on the
degree of partial denormalization. Further, we provide insights into query selectivity, memory overheads, and software
optimizations in the context of PIM-based filtering, which better explain the behavior and performance of these systems
across the benchmarks.

CCS Concepts: « Computer systems organization — Other architectures.

Additional Key Words and Phrases: Processing-in-Memory, DRAM, Databases

1 Introduction

Online Analytic Processing (OLAP) systems are critical technologies used to unlock the potential of vast enterprise
databases. These systems employ analytic SQL queries to transform database contents into graphs on live
dashboards, generate summary reports for key performance indicators (KPIs), and trigger alerts when KPIs
deviate from the norm. In modern enterprise settings, such analytic SQL queries are also used to prepare enterprise
databases for downstream machine learning (ML) pipelines (i.e., the data-heavy portions of an ML pipeline related
to data cleaning and feature engineering are often done in SQL).

Enterprise databases have consistently grown in size over the past five decades. Historically, Moore’s Law
allowed hardware performance to keep up, while maintaining a near-constant cost from one hardware generation
to the next. However, it is now evident that this trajectory is no longer sustainable. Indeed, Google recently
showed results from profiling its fleet and found that BigQuery, an analytics platform, consumed about 10% of
total cycles within the fleet, and proposed analytics as a candidate for acceleration. [24]

Furthermore, the importance of in-memory database organizations is growing rapidly for OLAP systems,
including in data science and business analytics settings where complex analytic queries are often performed
with a human-in-the-loop (a key driver behind the rise of DuckDB) [4], requiring high performance on individual
queries, in addition to high overall throughput. Even when the database does not fit in memory, smart methods
of caching or staging data from disk are used by the database management system (DBMS) to keep hot data
in memory. However, these workloads are often bound by the memory system’s performance in conventional
von Neumann-style processing systems (which dominates the server landscape on which database systems are
deployed) [55]. This memory wall [61] is likely to become worse over time, as memory densities are likely to
grow faster than memory bus speeds (both latency and throughput impact OLAP workload performance) [3].
Thus, the memory system is critical for overall query performance [5].

Our paper explores near-data processing and processing-in-memory (PIM) for analytic SQL queries. Notably
absent from prior efforts in this domain is an exploration of the different options for placing processing at
different locations within the memory architecture, in light of their impact on end-to-end query execution time.
We explore placing processing elements in the channel interface and the rank, bank, and subarray levels of the
memory hierarchy. We find that aggressive PIM architectures are not needed, because even modest, bank-level
PIM architectures are able to significantly accelerate the PIM-friendly task of filtering the database to find
the desired records—enough to make the remaining, less PIM-friendly tasks (fetching the selected records and
post-processing, i.e., aggregation, sorting, etc.) the new bottleneck. Further improvements in filtering are bound
by Amdah!’s Law.

We propose a PIM design that is specialized for data analytics, and filtering in particular, because this represents
“low-hanging fruit” for an initial PIM product. Because filtering is so important and primarily involves simple
operations on numeric and dictionary-encoded columns, the implementation can achieve high utilization of the
new hardware. Our proposed architecture is very lightweight, incurring minimal changes to the DRAM and CPU
architecture, and minimal area and power overhead. Indeed, our proposed design adds only an area-optimized
comparison unit to each DRAM bank and a small change in how cache line fetches and interleaving interact,

ACM Trans. Arch. Code

Membrane: Accelerating Database Analytics with DRAM-Based PIM Filtering and Schema Denormalization « 3

without requiring any other changes to data layouts. It incurs a marginal 0.1% area overhead, avoids the need
to restructure data between PIM access and regular memory read/write, and has no impact on conventional
read/write performance. This allows the PIM feature to be virtually invisible to applications or application phases
that do not use PIM. Our experiments do show that the main drawback of adding PIM is that activating all banks
in parallel leads to a 4x increase in DRAM power, requiring improved power delivery and cooling. However,
end-to-end energy efficiency improves by 3.4x.

With OLAP, the SQL interface allows the PIM product to be transparent to the users, and the analytics market
is large enough that it can likely support and benefit from a specialized PIM product. This avoids the typical
chicken-and-egg problem that faces many accelerators, in which there is a lack of applications and programming
models to create a ready market. Overall, our goal is a design that can enable low-risk adoption of PIM in
commodity DRAM, so that if this design is successful, it can serve as a starting point for more sophisticated and
general-purpose PIM architectures.

In this paper, we show that end-to-end query processing does indeed benefit from PIM and present the following
contributions:

(1) We concentrate on DRAM-based PIM and explore the hardware design possibilities for moving query
processing closer to the data in memory. We argue that the filtering step is both the most important and also the
best fit for PIM. The options we consider are rank-level processing (via a small module on the DIMM module’s
circuit board), two forms of bank-level PIM, and subarray-level PIM, and evaluate their impact on end-to-end
performance as well as performance relative to the extra area required to implement them. We show that the
bank level provides the best combination of performance and low overhead.

(2) Inspired by a prevalent database technique called WideTable [42], we use denormalization and dictionary
encoding to replace joins with filters, improving PIM amenability. Because full denormalization incurs prohibitive
space overhead (73% for SSB and exceeding available memory for TPC-H), we propose an approach that uses
static analysis of the workload to determine which columns to denormalize. Exploring the tradeoff between space
overhead and performance improvement, we find that partial denormalization with PIM filtering enables 5.9x /
6.4x speedup with only 17% / 13% additional space for SSB / TPC-H.

(3) We explore several dimensions of the hardware and software co-design space, and we present a variety of
insights on the relationships between hardware parallelism, filter selectivity, database size, software optimization,
and performance.

(4) We describe the full end-to-end implementation in DuckDB, a widely-used state-of-the-art OLAP database
system [50], including system integration.

2 _Background
2.1 OLAP database systems

This paper focuses on accelerating database analytics, in particular online analytical processing (OLAP), a
workload category concerned with efficiently extracting insights from large datasets. To facilitate understanding,
we provide a brief overview of the aspects of OLAP database systems that are most relevant to our contributions.

2.1.1 Database organization. OLAP databases typically contain a vast amount of historical data that has
accumulated over time. This data is typically organized into one or more large, central fact tables and several
smaller dimension tables as shown in Figure 1. Fact tables store the primary entities in the database. For example,
an e-commerce company may have an orders fact table with one record for each purchased item, including the
price, discount, and order date. Dimension tables store additional information about rows in the fact tables. For
example, product and customer dimension tables may contain information about the product that was ordered
and the customer that placed the order. OLAP queries typically involve filtering the records of the fact tables
and dimension tables, joining the filtered records together, and then grouping, aggregating, and/or sorting the

ACM Trans. Arch. Code

4« A.Shekar et al.

Full
Denormalization

Partial
Denormalization

1

Dimension 1

Table 1

(b-1) 1

Fact !
Table !
Dimension 1

Table 1

(D-2) 1

1

1

1

1

1
1
1
1
1
1
1
1
1
1
1
Normalized :

Fig. 1. Normalized vs. Denormalized forms in Database Organization

joined records to produce an informative result. For example, an OLAP query could be used to answer a question
of the form, “For each product in category X, what is the maximum discount applied to an order placed by a
customer living in city Y?” Tables generally consist of integer, decimal, and string data, which are sometimes
combined to form more complex data types. Frequent strings are often dictionary-encoded into integers, and
comparisons involving strings use the encoded values when appropriate. Traditional tree-based and hash-based
indexes are scarce in OLAP databases due to their space and maintenance overhead, especially with a variety of
queries. Instead, lightweight batch-level statistics (e.g., minimum and maximum in DuckDB) are used to improve
filter efficiency [1]. Databases targeting analytics are typically laid out in memory in a column-store format, in
which a given column (i.e., record field) is laid out consecutively, instead of the traditional row-store, in which all
fields of a record are kept together.

2.1.2 Core operators. OLAP database systems employ a small number of logical operators that can be combined
to execute complex queries. The input of each operator is one or more logical tables, often referred to as relations
in the context of relational algebra. The output is a single logical table. We emphasize the distinction between
logical and physical here, noting that the results of each operator are not necessarily materialized and are often
streamed to subsequent operators in a pipelined fashion. The filter operator (also known as selection) returns the
subset of its input rows for which some Boolean expression evaluates to true. Filters are often evaluated as part of
a table scan, although scans without filters do occur. The projection operator computes an expression on its input
columns (e.g., multiplying two columns together). The join operator finds matching rows between two tables
based on some condition. The aggregation and group-by aggregation operators compute aggregate values (e.g.,
sum) for one or more groups in the input. Each logical operator has one or more physical implementations that
may be specialized for a particular situation. For example, joins with equality conditions are typically executed
using hash joins. Operator specialization exposes a natural entry point for integrating PIM filtering into the
rest of the database system stack. We propose PIM filtering as a specialization of the filter operator. We provide
additional details about system integration later in the paper.

2.1.3 Denormalization. Given the read-mostly and append-only nature of OLAP databases, a common method to
speed up query processing is to denormalize the database as shown in Figure 1. This technique folds information
from the dimension table(s) into the fact table so that a join is no longer needed to evaluate OLAP queries. In
research, it has already become a common requirement for software-based OLAP acceleration methods [21,
41, 42, 49, 54]. Denormalization is now prevalent in multiple commercial products as well (e.g., [18, 27, 56]).
WideTable [42] is a specific, widely-used style of denormalization. Although denormalization comes at the cost
of increasing the database size, dictionary-based encoding can limit this overhead (to 9-17% in our experiments)
[15, 22, 34, 42, 51].

In practice, denormalization is applied as part of the database’s load-time Extract-Transform-Load (ETL)
pipeline. During this process, attributes from the dimension tables are merged into the fact table to create a

ACM Trans. Arch. Code

Membrane: Accelerating Database Analytics with DRAM-Based PIM Filtering and Schema Denormalization + 5

wide, join-free layout. This transformation is performed once for each data load or refresh and the resulting
denormalized columns are materialized and stored on disk. When the database is subsequently loaded into
memory, the system reads this already-denormalized representation directly, incurring no additional per-query
overhead. Thus, while denormalization increases the on-disk and in-memory footprint (mitigated by dictionary
encoding), it does not introduce query-latency penalties, since all queries operate on the preconstructed wide
schema without requiring runtime expansion or join processing. This load-time materialization is standard
practice in both research systems and commercial OLAP engines, and is a key reason why denormalization is
widely adopted to accelerate analytical workloads.

2.1.4 Memory performance. OLAP queries are data-intensive, involving relatively few processor cycles per
byte of input data. For example, when a query asks for all customers in a given zip code, it may scan an entire
table while only applying a simple comparison operation on each input record. As CPU speed and memory
size have increased faster than both the memory speed and memory bus bandwidth, OLAP query evaluation in
main-memory environments (the focus of this paper) is often memory-bound [55].

2.2 DRAM

DRAM exists in multiple configurations, including DDR (typically as DIMMs), and higher-performance variants
such as GDDR and HBM. DDR remains the standard for main memory in server systems targeting OLAP
workloads. CPUs interface with one or more 64-bit DDR memory channels, each managed by an on-chip memory
controller. Channels operate independently, enabling parallel read/write operations. Mainstream CPUs support
at least two channels, while server-grade processors may support up to eight. Each channel comprises multiple
ranks—groups of DRAM chips operating in parallel. In an x8 configuration, each chip contributes 8 bits toward a
64-bit word, requiring 8 chips per rank. All ranks share the channel’s bus, though only one rank can be active at
a time. A channel typically supports up to four ranks.

Within each chip, memory is divided into banks, which can be addressed independently but share the internal
datapath, limiting simultaneous transfers. Commands to different banks may be pipelined to exploit bank-level
parallelism. A logical bank spans all chips in a rank; each chip’s portion is a physical bank. Typical DRAM chips
contain 8-16 such banks.

Banks are further divided into subarrays, selected via high-order row address bits, with the remaining bits
selecting the row within the subarray. Each subarray includes dedicated decoders and a row buffer but shares buses
and a global data line (GDL), allowing only one subarray access at a time. Standard access requires precharging the
bank, activating the row, decoding the column, and transferring data to the output pins via the GDL. In open-page
mode, the row buffer retains data, allowing low-latency successive accesses (fccp: 4-8 cycles). Accessing a
different row requires full activation latency (tgas + trep + ter), typically around 100 cycles.

3 Mapping Data Analytics to PIM
3.1 PIM architecture requirements for data analytics

The landscape of near-data and in-memory processing is extensive, and our principal objective is to optimize
specifically for in-memory analytics workloads. Given that the data are already in memory, we seek a solution
that can operate on the data in place, allowing processing in memory and regular load/store access to the same
data, without the need to move data between PIM-friendly and CPU-friendly layouts. We also seek a solution
with sufficiently low overhead to justify inclusion within a commodity (albeit premium) DRAM product.

While many PIM designs have been proposed in the past, we look for inspiration to three major commercially-
announced PIM systems that respect the constraints mentioned earlier: Samsung’s Aquabolt (implemented in
HBM) [37], SK hynix’s AiM (based on GDDR) [35], and UPMEM (DDR) [25].

ACM Trans. Arch. Code

6 « A.Shekaretal.

SubArray Memory
T controller

SubArray

Sense.Amps
PE

€y

SubArray
! i :
¢ PE___ |}

Fig. 2. Membrane Design Space Exploration: @ Processing Element (PE) at the Subarray-level @ PE at the Rank-level @ PE
at the Bank-level @ PE at the Channel-level

All three extant PIM products place logic at the bank interface, but with significant hardware overhead.
Aquabolt and AiM target acceleration of neural network kernels such as GEMV and support SIMD arithmetic
units at the bank interface, with significant impact on capacity per unit area, 50% and 20-25% respectively.
However, servers designed for in-memory databases seem unlikely to adopt HBM, and currently use traditional
SDRAM DIMMs, because this technology is much lower cost and scales much more easily to the sizes needed.
UPMEM, on the other hand, implements independent tasklet-based processing at the DDR’s bank level, using a
64KB scratchpad per bank and data processing units (DPUs) that can operate independently, in a task-parallel
manner. We have not been able to find information about the area overhead of this approach.

We also considered subarray-level PIM (placing units at some or all of the subarrays in each of the banks),
rank-level near-data processing (placing units on a DIMM module, not in DRAM chips), and channel-level filtering
(placing units at the channel interface just before the cache hierarchy) as shown in Figure 2, and will show that
the bank-level approach provides the best balance of performance vs. overhead.

3.2 PIM Amenability Tests

Prior work [7] studies the HBM-PIM [37] style architecture and proposes four PIM-Amenability Tests to assess
whether a kernel is suitable for PIM acceleration. The work proposes that a kernel should pass all four tests
and not just a subset of them to be well-suited for PIM. Table 1 shows how the three major stages of database
analytics, filter, joins, and aggregation, map to these criteria. Only filtering meets all four criteria.

The four major criteria that the test suggests are as follows:

(1) Is the workload memory-bound? Bandwidth inside the DRAM is much higher than the bandwidth of the
DRAM interface. If the workload is memory bound and can effectively use this higher internal bandwidth,
then it is suitable for PIM acceleration. Otherwise, PIM may save energy but is less likely to boost performance.

(2) Does the workload have low cache reuse? If not, better performance is typically achieved via CPU computation,
which operates at a much higher clock speed and benefits from cache reuse.

(3) Are computations localized within a single bank? Transfers between banks or ranks are costly.

(4) Does the workload exhibit memory-aligned data parallelism? PIM architectures that leverage bank
and/or subarray-level parallelism compute simultaneously on the same row and column addresses across
banks/subarrays. Thus, data must be aligned to be executed in lockstep across multiple banks. Furthermore,
this type of data parallelism maximizes row buffer locality.

ACM Trans. Arch. Code

Membrane: Accelerating Database Analytics with DRAM-Based PIM Filtering and Schema Denormalization + 7

We would suggest another consideration related to item 4 above: Does the algorithm exhibit sufficient parallelism
and operate on large enough data objects to leverage sufficient internal parallelism of the DRAM to show speedup
over near-data processing outside the DRAM?

l PIM-Amenability Test [Filter [Aggregates [JOINs ‘
Memory-bound? v v v
Low cache-reuse? %4 X X
Localized operand interaction? %4 X X
Aligned Data Parallelism? v X X
Run on — PIM CPU CPU

Table 1. Major kernels used in Analytics Database Workloads and their PIM Amenability characteristics.

The filter kernel is memory-bound, because it does not exhibit temporal locality: it streams through the
entire table, and elements that do not match the filter predicate are not touched again. Column-oriented schema
do exhibit spatial locality, but because the computation density per word is low (just a simple comparison),
memory access remains the bottleneck. Typical in-memory databases are many GB in size, and filtering is also
embarrassingly parallelizable, allowing full use of the DRAM’s internal parallelism, and filtering exhibits aligned
data parallelism.

Joins, although memory-bound [17], benefit from having caches while performing hash-join. The join
algorithms are tweaked in many instances [9, 11, 53] to make the join algorithm cache-aware, and in many cases,
the dimension tables used to create the hash table for the hash join are small enough to fit easily in the CPU cache
hierarchy. We also observe that performing a hash join in DRAM would likely require a copy of the hash table in
each bank to avoid cross-bank interactions, although this could also be stored in the bank itself, and hashing
typically entails random accesses to the hash table, inhibiting aligned data parallelism. Hence, join kernels do not
meet 3 out of the 4 PIM-amenability criteria. Furthermore, in comparison to joins, filtering requires only a simple
comparison per predicate, instead of hashing plus table lookup, and denormalization is able to convert joins to
simple, PIM-friendly, streaming comparison operations, without the complexity of expensive hashing hardware.

Aggregation (grouping, sorting, etc.) is only performed on the selected records. It exhibits greater temporal
cache locality and involves more complex computation that would be difficult to localize within a bank and would
require more costly processing units in the PIM.

PID-Join [43] explored the idea of using UPMEM [25] bank-level architecture to accelerate the join algorithms.
The overall end-to-end query execution was accelerated by only 1.14x despite leveraging the large parallelism
and bandwidth increases available at the bank-level. In contrast, our approach emphasizes denormalization as a
strategy to reframe the workload itself to be more PIM-compatible. This enables more substantial performance
gains while incurring minimal hardware overhead.

Our results, shown in the upcoming sections, show that bank-level filtering units are so effective that they
reduce time spent on filtering to a negligible proportion of execution time and minimize the amount of data
that subsequently needs to be fetched by the CPU. This approach is so effective that a more aggressive PIM
approach, such as subarray-level PIM, rarely provides meaningful additional end-to-end performance benefit—
with bank-level PIM, the filtering step is already reduced to such a small portion of the overall execution time that
further hardware cost to achieve greater speedup is not worth the additional hardware cost. But in comparison to
channel- or rank-level processing, the bank-level approach provides significant speedup, with tiny hardware cost.

Once the filtering kernel has produced its output bitmap, the rest of the query is processed on the CPU. The
necessary fields from only the selected records, as indicated by the bitmap, are fetched to the CPU.

ACM Trans. Arch. Code

A. Shekar et al.

Memory
HOSH| contrait

[SubArray]—

Sense Amps !
1 config Reconfigurable
Comparator
SubArray 1 s
Ay i Control
ek

SubArray

l

Input

[Sense Amps | !
column decoder,

if(multiple
predicates)

T_>|BFU|

| Scratchpad memory

Output

Fig. 3. System with Membrane Bank-level Filtering Unit

4 PIM Architectures
4.1 Bank-level Filtering Unit (BFU)

Our proposed Bank-level Filtering Unit (BFU) only needs to support comparisons for the filtering step. The BFU
is placed at each bank interface, which fetches 64 bits in a burst from the subarray row buffer. The BFU processes
data every tCCD_L in All-Bank mode, like Aquabolt [37]. The breakdown of BFU is presented in Figure 3, and its
components are described below.

The BFU’s Reconfigurable Comparator Block (RCB) can support both equality check (database_value==a)
and range check (a<database_value<b) on integer and floating point values. Each comparison within BFU produces
a result bit that is placed into a bitmap stored in the BFU’s bitmap buffer, which is 64 bits. When performing a
sequence of multiple filtering operations, the RCB reads the value of the bitmap for the current position and ANDs
this with the result from the new comparison operation. This way, the bitmap accumulates the final Boolean
result for an entire query. Once the 64-bit output buffer is filled, it is written back. The RCB does not support
processing string or regex operations, as these are infrequent and more costly for PIM implementation. In any
case, strings would be dictionary-encoded.

Modern databases store columnar data in a bit-packed format to decrease memory usage, so that fields with a
small range, such as zip codes, do not waste space. Our comparison unit supports any bit length from 2 to 64 bits,
with smaller bit widths processed in SIMD fashion. Configuration bits indicate the data type to be processed.
Thus, before processing a database column, the RCBs are configured to the specified bit length, programmed with
the predicate values to compare against, and then the filtering operation begins to produce the desired resultant
bitmap. The Control Unit orchestrates fetching data from the DRAM bank and performing the comparison at
the desired bit lengths.

4.2 Subarray-level Filtering

To explore subarray-level parallelism, we adapt Fulcrum architecture [38], which places a PE at the edge of the
subarray, and uses Walkers (row-wide buffers) and column-select logic to move input operands out to the PE, and
move output values to the appropriate location in the output Walker. Due to the open-bitline architecture, we
can have at most one PE for every two subarrays. The full Fulcrum architecture supports arithmetic, etc., while
filtering only needs comparison, and it only needs two Walkers to read the input column values and capture the
resulting bitmap values. Our subarray-level PE is similar to the BFU, with a Walker used to hold the bitmap. The
second Walker means the area overhead per filtering unit is significantly higher than the bank-level approach.
For our chosen DRAM configuration (Table 2), CACTI [16] indicates 16 subarrays per bank with each subarray
containing 4096 rows. For 16 subarrays, the maximum subarray-level parallelism (SALP) is at most 8, because
each PE is shared by two subarrays. For smaller degrees of SALP, data may need to be moved from a subarray
that does not have access to a PE to one that does, using the LISA technique [14].

ACM Trans. Arch. Code

Membrane: Accelerating Database Analytics with DRAM-Based PIM Filtering and Schema Denormalization + 9

As shown in Figure 6, subarray-level PIM provides minimal extra performance compared to the bank-level
approach, at the cost of higher area, so we do not consider further design optimizations.

4.3 Rank-level and Channel-level Filtering

Placing computation outside the DRAM on the DIMM module or in the memory controller avoids changes to the
DRAM but also gives up the higher internal parallelism of the DRAM. We explore the rank-level filtering (similar
to [32]) by placing a filtering unit in a buffer chip on the DIMM circuit board. This rank-level filtering unit can
process an entire 64-bit DRAM read burst in one cycle, and is an upper bound for filtering throughput outside
the DRAM chips if we maintain a standard-width DRAM interface. For the channel-level filtering, we place a
similar unit in the memory controller. This channel-level filtering unit provides a rough approximation of what
the Intel Analytics Accelerator (IAA) [29] can achieve, by offloading filtering from the cores and avoiding cache
pollution. We model the channel-level filtering in this way, like the rank-level filter unit, for better comparison
with the rank-level approach, and because we were not able to find specific implementation details of the IAA.
The only significant difference between our channel- and rank-level filtering is that the rank-level approach has
one unit per rank, thus achieving rank-level parallelism.

As our results show, the speedup at the bank level, compared to rank- and channel-level, is substantial
(proportional to the number of banks), so we do not consider further optimizations for rank- and channel-level
processing.

4.4 System Integration

Following the Aquabolt approach [37], which maintains compatibility with existing DRAM interfaces, Membrane
supports Single-Bank (SB) mode (normal read/write) and All-Bank (AB) mode for PIM. In AB Mode, a DRAM
READ command to a specific address reads data at the address into the local BFU and performs a PIM computation
(i.e., comparison). In this mode, the bank and bank-groups bits in a given memory address are ignored, and data
at the same column position across all the banks is read into the local BFUs. As with Aquabolt, Membrane uses
MRS (Mode Register Switch) and PIMCONEF (PIM Configuration) registers to control the functionality of PIM
processing elements. MRS is used to transition between the normal mode (SB mode) and PIM-capable mode (AB
Mode). PIMCONEF registers are used to program the PIM processing elements with instructions. In our case, we
use the PIMCONTF registers to program the BFU with the values to be compared against during the predicate
operations and set the processing bitwidth.

Cacheline De-interleaving Unit (DU). A cache line is read or written in 64-bit chunks, and a single 64-bit
chunk of data is usually striped across multiple chips within a single DDR rank. Traditionally, DDR comes in
x4, x8, or x16 configurations, in which each xN chip in the rank contributes 4, 8, or 16 bits to a 64-bit DRAM
access. This striping across multiple chips is problematic for PIM when processing operands greater than the
4-, 8-, or 16-bit width, because different bytes of an operand are spread across multiple chips, preventing even
simple comparisons. In order to support the PIM-compatible data layout, we add a cache-line-wide buffer that
stores and swizzles the bits in a cache line before writing to DRAM or reading from DRAM, such that the entire
operand resides in one single DRAM chip. Based on our discussions with two major CPU vendors, the overhead
associated with routing incoming bytes to appropriate locations in this buffer is likely to have negligible impact
on area and no impact on timing.

PIM Pages. When running in AB Mode, each DRAM command triggers a READ and PIM operation across
a single database column in the same row across all banks. A PIM page is the enforced minimum allocation
unit for PIM, and is a multiple of the native operating system superpage size. The PIM page size will depend
on the system’s configuration, so the PIM page fills at least one entire system-wide DRAM row, i.e. spanning
this row “position" across all banks, ranks, and channels. For a large memory system, this will require multiple

ACM Trans. Arch. Code

10 « A.Shekaret al.

CPU
Perform

@ @ aggregate ops

A

Issue filter @

operations

Read Result

@ v bitmap

Membrane

Query Result

®

PIM Memory

Fig. 4. Query Execution Flow with Membrane

contiguous superpages, e.g., for an 8-channel, four ranks/channel system with DDR4.8Gb_x8_2933 DRAM chip
configuration taken from [40], a PIM page is 4 MByte, requiring two 2 MByte superpages on an x86-64 system.
For a smaller system, a single superpage will suffice, and it might occupy several logical rows. This means that
when building a system to use Membrane memory, the memory system should configure memory channels in
powers of 2. If the data does not fully occupy a PIM page, padding should be applied, and any results associated
with the padded data must be disregarded when transferring the results back to the Host CPU.

Using superpages allows us to allocate PIM data with permissions enabling PIM. The operating system must
support a new version of malloc, filter_malloc(), that gives the owner permission to issue PIM commands to
this region of memory. A filter_malloc is needed for each input PIM page as well as each output PIM page, for
storing the output bitmap. PIM permission must be noted in the page table and requires one extra bit in the
TLB. The system must also support virtual-to-physical translation and permission checking at the granularity of
PIM pages; more on this in the next subsection. No other changes are required to the operating system or MMU.
Leveraging the superpage feature benefits from the reduced TLB lookups provided by superpages. Note also that
PIM pages do not need to require any particular placement in memory or relative to each other.

Query Processing and Additional System/Hardware Support Membrane requires several new CPU
instructions to control PIM operation, as noted below. The description below is specific to bank-level PIM, but can
easily be adapted to subarray-level, etc. The overall execution flow is shown in Figure 4. The software performs
PIM filtering on a column by operating on one PIM page at a time. We envision this being implemented in a
PIM user-level filter library that any database engine can incorporate. Only one thread in the database should
perform PIM.

The library firstissues a pim_begin() system call. This allows the OS or hypervisor to manage access to PIM
mode and return an error if the calling process is not allowed to use PIM. It can also support fair sharing for PIM
access, etc. Although Aquabolt [37] allows user-level access to PIM mode, we suggest that access be mediated
by the OS. The pim_begin() system call writes into the MRS register to drain the memory controller queues
and switch all channels into All Bank mode. This also blocks regular load-store access from other threads/cores.
When the system call returns, the user-level library programs the BFUs with the predicate values and operation
type using a PIM_CONTF instruction that writes to the PIMCONF address, which is broadcast to all banks’ BFUs.

Now filtering can begin using a sequence of PIM_FILTER instructions, each specifying one PIM input page,
one PIM output page, and an offset within the output page (because input values may be up to 64 bits but the
corresponding output value is just a single bit, so processing an entire input PIM page only fills up a small
portion of the output page). These addresses are translated through the TLB to obtain the physical address for
the PIM page and verify PIM permission, and these physical addresses are sent to all memory controllers. For
each PIM_FILTER instruction, the memory controllers process their portion of the PIM page by sending the

ACM Trans. Arch. Code

Membrane: Accelerating Database Analytics with DRAM-Based PIM Filtering and Schema Denormalization « 11

appropriate sequence of PIM DRAM commands to activate the target DRAM row and sequence through this
row’s DRAM columns. The latency for each of these DRAM commands is deterministic, so the memory controller
knows how long to wait before initiating a subsequent command. A PIM_FILTER instruction is issued for each
PIM page needed to complete the filtering required by the column. Once the filtering of the database column is
complete, a new column can be processed. When PIM computation is complete, the library issues a pim_end()
system call, which reverts the memory to standard operation. Note that we do not attempt to offload the PIM
computation from the core, because AB mode blocks the entire memory system anyway, and the calling thread
is waiting on the PIM results. In summary, PIM is not completely transparent to the software. The database
application needs to allocate the data in memory using pim_malloc(), and use the PIM-enabled filter library.

Filtering is idempotent, so if a non-maskable interrupt occurs that requires DRAM access, for simplicity, the
filter operation can be aborted and restarted later. Any prior partial bitmap results will be recomputed. This
avoids the need to preserve partial PIM state.

For other interrupts, the OS can wait until a PIM page has been completed, then transition out of PIM mode if
needed. If the process performing PIM computation needs to be suspended, the OS only needs to remember to
re-initiate PIM mode when this process resumes. The process’s progress in the filtering task is remembered in its
user state.

Our modeling based on the Samsung Aquabolt PIM Simulator [46] indicates that if any incoming regular read
request is allowed to immediately interrupt PIM processing, and we assume a worst-case scenario in which a
constant stream of reads causes a mode switch after processing every individual GDL chunk, the bank-level
filtering latency increases by 23.9x. Despite this, it remains 5.4x faster than the CPU-only filtering approach.
Under these conditions, the geometric mean speedup for SSB decreases from 5.9x to 4.8x (Sec. 5), with the most
significant impact observed in queries that initially benefited the most from PIM filtering. For example, Q3.4,
which achieved a speedup of 25.9x without interruptions, sees its speedup drop to 9.9x under frequent switching
overheads. However, suppose PIM filtering is allowed to proceed for at least 50 ns without interruption (i.e., a
total memory blocking interval of 200 ns, comprising 150 ns for RT mode switching plus 50 ns for filtering). In
that case, the geomean speedup only drops slightly from 5.9x to 5.7, and Q3.4 sees a more modest decrease from
25.9x to 21.9x (see detailed results in Section 5).

No changes are needed to support multi-tenancy, since each VM will have its own memory allocations. The
hypervisor will need to support PIM mode. Switching between separate PIM-enabled database instances does not
incur the cost of the mode switch, and fairness could be achieved by switching after processing a fixed number of
PIM pages.

Once all filtering is.completed for the query, the database software now reads the bitmaps from the main
memory, and accesses any needed fields for records that have been selected. The aggregate operations (sorting,
group by, average or as such) to produce the final result.

Privilege Level and PIM Instruction Semantics. Following the Aquabolt design philosophy [37], our PIM
operations are exposed as user-level instructions that translate into sequences of standard DRAM READ/WRITE
commands at the memory controller. This avoids reliance on privileged commands, which require kernel
intervention and introduce substantial overhead due to system calls and context switching. Instead, we reserve a
small memory region, PIM CONF, that maps to two configuration registers—the AB Mode Register (ABMR) and
the SB Mode Register (SBMR). Transitions between Single-Bank (SB) and All-Bank (AB) modes are performed
entirely in user space by issuing carefully crafted sequences of standard ACT/PRE commands to specific addresses
in the PIM CONF memory region. This approach maintains full compatibility with JEDEC-compliant DRAM
controllers and allows unprivileged processes to invoke AB-mode PIM operations without elevated privilege
levels.

Trap Behavior, Return Paths, and Execution Flow. PIM instructions execute without generating traps
or interrupts. At the CPU level, a PIM instruction simply enqueues a DRAM command sequence targeting the

ACM Trans. Arch. Code

12« A.Shekaret al.

PIM memory region. Once the program reaches a designated ordering point (e.g., a memory fence), the core
guarantees that all previously issued PIM commands are visible to the memory controller before transitioning
to PIM execution. The PIM operations proceed entirely within DRAM, and their results are written back to
architecturally visible memory locations. After the PIM sequence completes, the CPU resumes normal execution
and reads the results via standard load instructions. No asynchronous events, interrupts, or special return paths
are required; the instruction flow remains fully synchronous from the CPU’s perspective.

Ordering Semantics and Interaction with Out-of-Order Cores. To guarantee correctness, we place
ordering constraints only at the boundaries of PIM execution phases. Before transitioning into AB mode, the host
issues a memory fence to ensure that all in-flight CPU memory requests have completed. Similarly, after the
final PIM command, a second fence ensures that all AB-mode operations have finished before the CPU resumes
normal execution.

Crucially, these fences do not constrain the ordering of instructions within the PIM region. Once PIM commands
are dispatched to the memory controller, the DRAM subsystem dictates the execution semantics. In AB mode, the
DRAM ranks and banks ignore the bank address bits and broadcast each command to all banks simultaneously,
effectively collapsing the memory array into a single logical bank. Thus, all PIM operations in AB mode are
inherently serialized, and the memory controller cannot exploit bank-level concurrency or overlap independent
operations. Because AB-mode execution is already globally serialized at the DRAM level, enforcing strict ordering
at the CPU boundary does not result in any additional performance penalty. Any potential parallelism that an
out-of-order CPU might provide is already moot under AB-mode constraints.

Ordering Fences. In conventional DRAM systems, excessive fencing harms performance by suppressing bank-
level and memory-level parallelism. In AB mode, however, this parallelism is restructured rather than removed:
the hardware executes the same row/column command across all banks in lock-step, effectively transforming
independent bank-level parallelism into coordinated all-bank parallelism. Because each PIM command occupies
the entire DRAM subsystem during its execution window, the hardware already prevents overlapping or out-of-
order activity across banks. CPU-level ordering fences therefore simply align the processor’s view of memory with
the serialization already imposed by AB-mode PIM execution. As a result, fences at mode-transition boundaries
introduce negligible overhead beyond the inherent lock-step operation of AB mode.

5 Experimental Methodology

DRAM simulation and host system. In Membrane, filters are executed in PIM, and the remaining work of the
query is executed on the host CPU, taking the bitmap as input. To model the PIM portion, we use DRAMSim3
[40], a cycle-accurate DRAM simulator. When a PIM page is activated, the entire page is brought into the row
buffers across all the banks and all the ranks, and then each bank processes its portion in 64-bit chunks. The
precharge, row activation, and reads are modeled in DRAMsim3 to obtain the time required to filter an entire
PIM page in AB mode. To evaluate the host CPU portion, we use DuckDB, a state-of-the-art OLAP database
system [50]. DuckDB is extensively optimized, outperforming more established systems by orders of magnitude
in many cases, and is widely used as a baseline in database research [20, 23, 30, 31]. The total end-to-end time
spent processing a query is the sum of time spent on PIM filters (simulated) and the rest of the query in DuckDB
(real-world execution). Note that, to avoid iterating through sparse bitmaps, we modify DuckDB to leverage CPU
instructions that count the number of trailing zeroes in a word.

Workload. To evaluate the many dimensions of the DRAM-PIM filtering design space, we use two established
OLAP benchmarks: TPC-H [2] and the Star Schema Benchmark (SSB) [47]. TPC-H is a widely used OLAP
benchmark designed to comprehensively assess the performance of OLAP systems. The TPC-H database consists
of alarge, central 1ineitem table emulating the items ordered from a business. Dimension tables store information
about parts, suppliers, customers, and locations. The benchmark consists of 22 queries. To focus our evaluation,

ACM Trans. Arch. Code

Membrane: Accelerating Database Analytics with DRAM-Based PIM Filtering and Schema Denormalization « 13

Table 2. Configuration Details.

Property Value

Baseline System Intel Xeon Silver 4314 @ 2.40 GHz

Total Cores / Main Memory | 16 Cores (32 threads) / 128 GB (8-ch DDR4-3200)

PIM Config. DDR4_8Gb_x8_3200; 8-channel, 4-rank/ch, 4-bank-group; 4 banks per bank-group,
16 subarrays/bank

Table 3. Database size in GB for varying scale factor (SF).

SF-10 SF-20 SF-50 SF-100

SSB 6.8 8.6 14.4 23.5
TPC-H 7.8 10.8 21.7 39.3

we use a subset of 8 queries that have been used in prior work focused on evaluating filter performance [58]. We
report the geometric mean of this subset to summarize our results. While SSB is based on TPC-H, it includes
notable distinctions that aim to improve its accuracy and coverage as a benchmark. SSB combines the 1ineitem
and orders tables, a standard technique used to avoid unnecessary joins [33]. It also drops tables and columns
that are unlikely to be present in an OLAP database, such as string comments and shipping instructions. The
query suite consists of 4 “flights”, each of which models a common OLAP pattern. Within each query flight, there
are several queries with varying selectivity (the number of rows that contribute to the result of each query). The
database itself consists of one large fact table and four smaller dimension tables.

Membrane Circuit Evaluation. We implement Membrane’s Bank-level Filtering Unit in RTL and use Synopsis
DC Compiler in 14 nm to evaluate its delay, power, and area. We use scaling factors from Stillmaker et al. [57] to
scale down the results to 22nm. Each BFU occupies 0.001mm? area, which is negligible, and has a path delay of
0.45ns, which easily fits within the column-to-column access time. The power for one BFU is 118.7uW, which,
when aggregated across all banks within a rank, is 2.3% more than the regular DRAM operation. However, AB
mode operates all banks at once, which increases peak power. Another PIM architecture [28] that leverages
the AB mode observes that the peak power increases by 4x when operating in this mode. By engaging every
bank in parallel, AB mode incurs a four-times higher power draw than SB-mode DRAM when operating at
peak read bandwidth [28]. If the DIMM memory slots cannot supply enough power, an alternative way is to
integrate external power delivery mechanisms—such as NVDIMMs [45], an approach adopted by other PIM
implementations such as [6].

Our evaluations consider these increased power requirements. Overall, we observe a 3.6/3.1x geometric-
mean energy efficiency gain over a baseline system without Membrane for SSB/TPCH benchmarks,
respectively.

Energy Consumption Analysis. We estimate the power consumption of CPU while performing filter and
non filter kernels based on CPU usage using the methodology in [10]. The overall energy consumption is obtained
by integrating CPU power, DRAM power (obtained from DRAMsim3), and BFU power (obtained from the RTL
analysis above) over the time spent on the filter and non-filter kernels of end-to-end query execution. In AB mode,
the extra power is included for the duration of PIM execution. The relative energy efficiency highly correlates
with the end-to-end execution time of the queries. We observe higher energy efficiency (~20x) with more
selective queries such as Q3.3, 03.4, Q19.

Denormalization. To improve PIM amenability and fully exploit Membrane’s capabilities, we explore the use
of denormalization. As introduced in Section 2.1, denormalization involves joining tables as a database is loaded.
Commonly used to reduce query complexity and improve performance, denormalization replaces joins with

ACM Trans. Arch. Code

14 « A.Shekar et al.

Table 4. Levels of Schema Denormalization.

Denorm. Level | Description
D1 No Denormalization (Plain Schema)
D2 Denormalizing columns used in WHERE clause only
D3 D2 + Columns used for aggregate operations
D4 Full Schema Denormalization
D2 s D3 Hmm D4

SELECT | c_name , ...|

FROM customer, orders, lineitem,

WHERE S= 11993-10<01"

GROUP BY c_custkey, c¢_name,
N

Fig. 5. lllustrating which columns are denormalized in each level with TPC-H Q10. In D3, c_name is not denormalized because
it is functionally determined by c_custkey.

filters. However, denormalization requires extra space to store denormalized data. The choice of which columns
to denormalize presents a tradeoff between PIM amenability and space overhead, as shown in Table 4.

Prior work, such as [44], has explored automated approaches like cross-training to identify columns suitable
for denormalization. In contrast, our study aims to showcase the potential benefits of partial denormalization,
guided by the queries present in the selected benchmarks. In practice, decisions regarding which columns to
denormalize are typically made by schema designers and database optimizers, taking into account application
requirements, historical query patterns, and broader usage characteristics.

At one extreme (D1), we can avoid denormalization, which incurs no space overhead but limits the speedup.
At the other extreme (D4), we can denormalize all columns, which maximizes PIM amenability at the expense of
considerable space overhead. As reported in prior work, full denormalization can result in a space blowup of over
10x [42].

We propose two denormalization levels, D2 and D3, which fall between the two extremes, offering a better
balance between PIM amenability and space overhead. Inspired by WideTable [42], we use static analysis of the
workload to choose a subset of columns to denormalize. In addition, we use dictionary encoding and bitpacking
compression in all our experiments to reduce space overhead, which is particularly beneficial for denormalization.
These techniques do not affect PIM amenability.

In D2, we denormalize a column if it appears in the WHERE clause of any query in the workload. Recall from
Section 2.1 that in D1, rows of interest are selected through a combination of filters and joins. D2 replaces these
joins with filters.

D3 is motivated by the observation that a significant portion of query time is spent on joins even after
denormalizing columns that appear in the WHERE clause, as shown by the D2 breakdown in Figure 8b. For certain
queries, joins are used to retrieve columns that are not in the WHERE clause but are still needed by the query. In D3,
we reduce the impact of these joins by denormalizing a column if it appears in the WHERE clause or the SELECT
clause of any query in the workload. To reduce space, D3 involves a notable exception: we do not denormalize
dimension table columns that only appear in the SELECT clause and are functionally determined by another
column in the GROUP BY clause. The exception is based on the observation that group-by aggregation and limit
operations often reduce the number of rows down to the order of tens to hundreds. After these operations have

ACM Trans. Arch. Code

Membrane: Accelerating Database Analytics with DRAM-Based PIM Filtering and Schema Denormalization « 15

Table 5. Single-column filter latency and processing throughput across different DRAM heirarchy

PIM Arch. Chnl | Rank | Bank | SALP-2 | SALP-4 | SALP-8
Time (ms) 324 8.46 0.28 0.08 0.04 0.02
Throughput (GBps) | 37.03 | 141.4 | 4285.71 | 15000 30000 60000

been completed, an inexpensive join can be used to retrieve the functionally dependent columns and produce the
result. As shown in Figure 5, D3 avoids denormalizing c_name and other large columns from the customer table.

6 Results
6.1 Filter Performance Across DRAM Hierarchy

We previously explained why the filter kernel is the most suitable candidate for PIM acceleration and suggested
that the bank level is the best choice for adding PIM computation for filtering. Now we substantiate this claim by
briefly evaluating the benefits of placing PIM filtering at different levels of the DRAM hierarchy.

In order to assess the benefit of filtering at different levels of the DRAM hierarchy, we constructed a
microbenchmark that performs a simple predicate (a<input_value<b) evaluation on one column of the Star
Schema Benchmark’s (SSB) fact table. Each fact table column at scale factor-100 contains 600,038,146 elements;
for this microbenchmark, the values are 16 bits each (for a total of 1.12 GB).

Table 5 shows the latency for our microbenchmark with different forms of near/in-memory processing.
While 8-way subarray-level parallelism is able to achieve 14x speedup over the bank-level approach on our
microbenchmark, when considering geometric-mean end-to-end performance of the SSB and TPC-H suites, as
shown in Figure 6 along with area overhead, the speedup advantage with SALP over baseline CPU drops to 1.1x
speedup (SALP-8 vs Bank-Level), which does not appear to justify the much higher area cost.

Comparing between rank-level and bank-level, we observe that rank-level PIM does not have any area overhead
inside the DRAM chips, but it is 29.4x slower than the bank level approach in the microbenchmark. However,
when considering the geometric-mean end-to-end performance of the SSB/TPC-H suites, the bank-level solution
offers 1.89x/1.59x speedup over rank-level with 4 ranks/channel.

Filtering could also be performed in the memory controller or some other unit in the CPU, as in the Intel
Analytics Accelerator [29], which offloads this data-intensive task from the cores and avoids cache pollution, but
gives up the rank-level parallelism of the rank-level solution. Bank-level offers 3.7x/3.15x speedup (SSB/TPCH)
over this channel-level solution.

Based on these findings, we conclude that the bank is the best level of the DRAM hierarchy in which to
implement filtering, with only 0.1% area overhead relative to the baseline DRAM chip area.

6.2 Partial denormalization enables more extensive acceleration

We evaluated the overall performance of Membrane bank-level PIM’s performance with SSB and TPC-H
benchmarks against the baseline system configuration (Table 2). Speedups directly correlate with query selectivity.
We observe that with the accelerated PIM filters, we obtain end-to-end geo-mean query speedup of 5.92x/6.38x in
SSB/TPC-H while using the D3 schema, but only 1.2x and 1.3x for SSB and TPC-H if denormalization is not used
(D1).

To better understand the benefits of denormalization, in Figure 8, we show the average percentage of time
spent in each operator for SSB and TPC-H without PIM acceleration. For denormalization level D1 (the standard
schema), scans (both with and without filtering) account for 60% and 51% of query time in SSB and TPC-H. As
shown in Figure 7, for denormalization level D1, Membrane achieves over 2x speedup for SSB Q1.2 and Q1.3 and
TPC-H Q6 and Q14, which are dominated by filtering. Unfortunately, because scans with filters account for only
22% of overall SSB query time and 46% of overall TPC-H query time, Amdahl’s law limits the overall potential

ACM Trans. Arch. Code

16 « A.Shekar et al.

Channel I

o

> Rank HH

3 Bank ot

= Subarray (SALP-2) = PIM I .

:?’ Subarray (SALP-4) CPU I .

Subarray (SALP-8) I
0.00 0.05 0.10 0.15 0.00102 255075
GM query time (seconds) Area %
(a) Query Time (b) Area Overhead

Fig. 6. Geometric mean SSB query time and area overhead (relative to cell area) for varying PIM architectures.

speedup to approximately 1.3x and 1.9x. However, Figure 8 shows that a substantial portion of time in D1 is also
spent on joins, which dominate after D1 filtering is accelerated by PIM.

At the expense of 17% and 9% extra space, as shown in Figure 9, D2 yields geometric mean query speedups of
5.9x and 4.8x for SSB and TPC-H. Denormalization without Membrane acceleration also improves performance,
but to a much lesser extent. D3 further increases the portion of query time that Membrane can accelerate. At the
expense of 3% extra space, D3 achieves a geometric mean query speedup of 6.4x for TPC-H. For SSB, D2 and D3
happen to be equivalent. Figure 8 shows that with D3, joins have been nearly eliminated and converted to filters,
and most of the execution time has been converted to filters.

6.3 Speedup tends to increase as database size increases

We now investigate the effect of database size on query speedup. Recall that the number of rows in each table is
proportional to the scale factor, with the exception of the part table in SSB, which scales logarithmically. As
shown in Table 3, database size is roughly proportional to scale factor.

Varying the scale factor from 10 to 100, we evaluate Membrane’s performance for denormalization levels D1-3,
shown in Figure 10. We observe that query speedup tends to increase as the database size increases. At scale
factor 10 and denormalization level D3, the geometric mean query speedups are 4.4x and 5.0x for SSB and TPC-H.
At scale factor 100, the speedups increase to 5.9x and 6.4x. Database size has little effect on query speedup without
PIM:

To explain the effect of database size of query speedup, we measured average CPU usage for each configuration.
We note that the CPU usage reported here excludes the period spent waiting for PIM filtering to complete. Results
are shown in Figure 10. At smaller scale factors, CPU usage with PIM is significantly lower than CPU usage
without PIM.

During query processing, database systems typically incur overheads for parsing, planning, optimization, and
scheduling. Although DuckDB is extensively optimized, at small scale factors, the CPU has very little data left to
process after PIM filtering, so these overheads play an outsized role.

6.4 Speedup tends to increase as PIM selectivity decreases

We now explore the impact of PIM selectivity on query speedup. We define PIM selectivity as the fraction of
rows returned by PIM after filtering, or equivalently, the fraction of set bits in the bitmap. A given query’s PIM
selectivity may depend on the denormalization level. For example, TPC-H Q3 has a PIM selectivity of about 0.54
for D1 and 0.005 for D2.

ACM Trans. Arch. Code

Membrane: Accelerating Database Analytics with DRAM-Based PIM Filtering and Schema Denormalization « 17

s D1 mmwm D2 mmm D3 w7 \NithoutPIM mmm \Vith PIM

20
10 | 11 I
S
3 y
%‘g ‘ ol ol i 14
AARUU R A T 0 L , il 7 i s
1 Wylu A] B) BS] || B] B (]] B P 5'-¢avﬂ~u
sMMEZHIMEIEMI:EélﬁailéiiluélééE'!!IiéiliHlM
Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3 GM
2e-2 6e-4 T7e-5 8e-3 2e-3 2e-4 3e-2 1e-3 6e-5 8e-/ 2e-2n5e-3 9e-5
Query
(a) SSB
50 y o —m -
25 S) 9
6 e - A
o ' o
El
D ol
g3 b A ||
i ekt bk
1 e f u~|f|| 0l
BNV B WP 1 1 A1 VL W T I L

Q3 Q5 Q6 Q@8 Q10 Q12 Q14 Q19 GM
5e-3" 1e-3 2e-2 4e-4 2e-2 5e-3 1e-2 2e-5

Query

(b) TPC-H
Fig. 7. Query speedup for varying denormalization level (relative to D1 without PIM). Query selectivity is shown at the
bottom.

In Figure 11, we show query speedup versus PIM selectivity for combined SSB and TPC-H. Each point in the
plot is an individual query. We observe that query speedup tends to increase as PIM selectivity decreases. All
queries with PIM selectivity less than 107 are at least 10x faster in Membrane. In contrast, among queries with
PIM selectivity greater than 0.1, the maximum query speedup is 1.3x. Fortunately, analytical queries usually
include filters with low selectivity, which can be accelerated in Membrane after partial denormalization. For
D3, the minimum and maximum PIM selectivities are 7.6 X 107 and 0.034, respectively, and the minimum and
maximum query speedups are 2.2x and 57x, respectively.

ACM Trans. Arch. Code

18 « A.Shekar et al.

100 =y 100
© 75 ° 75
© 50 © 50 st Aggregation
e S serr Join
i= = B
25 25 %993 Projection
S
0 0 | v P (va?r? filter)
S
D3 D1 D2 D3 s (ithout fiter)
Denorm. level Denorm. level
(a) SSB (b) TPC-H
Fig. 8. Average operator time percentage for varying denormalization level (without PIM).
6 6
Memory
o 5 o 5 | W= overhead
= 4 = 4 GM speedup
&U 3 g 3 F - (without PIM)
2 2 GM speedup
)) | - (with PIM)
. | I Al . I 0
D2 D3 D2 D3
Denorm. level Denorm. level
(a) SSB (b) TPC-H

Fig. 9. Memory overhead and geometric mean query speedup for varying denormalization level (relative to D1 without PIM).

7 Related Work

Prior works in the database field, such as BitWeaving [41], exploited the “intra-cycle”/bit-level parallelism of
processors to accelerate the scan and filtering kernels. SIMD-scan [59] aimed to perform the same by utilizing
on-chip vector processing units with SSE instructions.

Processing In Storage Solutions. With database machines [12], there were attempts in the 1970s and 1980s
to push query computation closer to where the data resided—at that time, spinning disks. However, these efforts
were abandoned because the resulting custom storage package was expensive to manufacture, in stark contrast to
the commodity microprocessors that were experiencing exponential performance gains at the time. However, now,
with the slowing of Moore’s Law, there is a need to revisit ideas for specialization in today’s context. Pinatubo
[39] and SmartSSD [19] are examples of other works that have proposed pushing query processing into the
storage device. These designs, however, are limited by the storage I/O interface and suffer from higher latency
and lower degrees of parallelism, and do not serve the needs of markets using in-memory databases.

DRAM-Based PIM Designs. Several prior works, such as Ambit [54] and SIMDRAM [26], propose a triple-row
activation design to perform logical operations at the subarray-level that could be leveraged for processing

ACM Trans. Arch. Code

Membrane: Accelerating Database Analytics with DRAM-Based PIM Filtering and Schema Denormalization « 19

s D1 mmwm D2 mmm D3 w7 \NithoutPIM mmm \Vith PIM

o 6 o 6
=} -
30 32
4 4
(] (]
0_3 0.3 -
(7] w0
s 2 -1 S 2 | i P e [/
AP vllv % ; / g
O 1 Ll ik O 1 Lkl vk
o AN 22AZA AEAAd i o [zl il Al
X 100 X 100
° 7/ L/ o "
o 75 1L O ge g i
© 1R /R HU AV o YRV HUN AN
A VR R 1A ffﬂ}f 1707
» -7 AN B UL) w7 AN B AU
s bl &' ;: Arree
> 25 RN - 255: HN!MM
NMAUHHU AN U1 u '”Hfua
% 0¢¢¢!!!¢ A UL % LY 71 202020 707070 20707
10 20 50 100 10 20 50 100
Scale factor Scale factor
(a) SSB (b) TPC-H

Fig. 10. Geometric mean query speedup (relative to D1 without PIM, same scale factor) and average CPU usage for varying
scale factor and denormalization level.

)
()

o I Py Denorm. level
=’ 1 ®
210 LY ® D1
o ®

%l ® D3

oO"°
100 ..l.

-5 -3 -1
10 10 10
PIM selectivity
Fig. 11. Query speedup for varying PIM selectivity and denormalization level (relative to D1 without PIM).

OLAP queries, but these approaches require more significant changes to the DRAM, in particular support for
multiple concurrent row activations per bit-level operation. JAFFAR [62] is a DIMM-level design that focuses
on the filter operation by operating on the I/O buffer present on each DIMM. This approach is similar to our
rank-level. The Reconfigurable Vector Unit [52] proposes to implement vector processing units at a vault-level in

ACM Trans. Arch. Code

20 « A.Shekar et al.

an HMC design. Polynesia [13] accelerates the analytical portion of HTAP database workloads using vault-level
processing elements on HMC. Our approach would also extend to HMC or HBM, but in-memory databases
benefit from the greater capacity scaling of conventional DIMMs. Most prior works have explored offloading
scans to processing in/near memory, such as rank-level processing, e.g., with Samsung’s AX-DIMM [36], but
fail to evaluate end-to-end query processing pipelines on popular benchmark suites such as SSB and TPCH.
Membrane differs from most of these works in that it thoroughly explores the design space for conventional
DIMM memory and cooperatively processes the entire query together with the host, rather than in a production
DBMS, DuckDB, instead of offloading the entire query processing to PIM hardware or only evaluating kernels.

Alternative Architectures. Prior works such as [8] accelerated the filtering step on the GPU but omitted
the data-retrieval portion and subsequent postprocessing, which we have shown will often consume a large
portion of query processing time. Ibex [60] and [63] implemented query processing on FPGAs. However, GPUs
and FPGAs suffer from the limited scalability of onboard memory compared to the main memory addressable by
the CPU. Papaphilippou and Luk [48] provides a comprehensive survey of works investigating acceleration of
database systems using FPGAs and arrives at similar conclusions.

We implemented an optimized version of the filter kernel on an Alveo U280 FPGA to leverage the onboard
HBM memory to execute the filter microkernel described earlier in Section 6.1. We observe that Membrane
outperforms this FPGA setup by at least 27.46%, including the cost of data transfers to and from the FPGA.

CPUs, discrete GPUs, and similar processing units can utilize Membrane bank-level PIM units for filter and
transfer intermediate results efficiently back to the hosts.

8 Conclusions

In-memory analytics can be accelerated by offloading the filter kernels to PIM processing units. In this work,
we observe that denormalization methods make these workloads significantly more amenable to PIM filtering,
albeit by incurring extra memory overheads. We evaluated different levels of denormalization that provide a
tradeoff between increased memory consumption and improved performance. We thoroughly explored the DRAM
design space to conclude that bank-level offers high performance with minimal area overhead and power usage.
Membrane’s bank-level PIM can outperform the CPU baselines by 5.9-6.3x and have a memory overhead of 9-17%,
depending on the different denormalization levels across both TPCH/SSB benchmarks.

9 Acknowledgements

This work is funded in part by the National Science Foundation (NSF) under collaborative awards CCF-2312739,
CCF-2312740, CCF-2312741, and CCF-2407690 as well as PRISM and ACE, two of seven centers in JUMP 2.0, a
Semiconductor Research Corporation (SRC) program, sponsored by DARPA.

References

[1] [n.d.]. Indexes. https://duckdb.org/docs/sql/indexes.html. Accessed: 2024-04-18.

[2] [n.d.]. TPC-H Benchmark Specification. https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.1.pdf

[3] 2021. Business Intelligence and Analytics Market. https://www.emergenresearch.com/request-sample/467.

[4] 2022. In-Memory Database Market. https://www.alliedmarketresearch.com/in-memory-database-market- A31497.

[5] Daniel Abadi, Anastasia Ailamaki, David Andersen, Peter Bailis, Magdalena Balazinska, Philip A. Bernstein, Peter Boncz, Surajit
Chaudhuri, Alvin Cheung, Anhai Doan, Luna Dong, Michael J. Franklin, Juliana Freire, Alon Halevy, Joseph M. Hellerstein, Stratos
Idreos, Donald Kossmann, Tim Kraska, Sailesh Krishnamurthy, Volker Markl, Sergey Melnik, Tova Milo, C. Mohan, Thomas Neumann,
Beng Chin Ooi, Fatma Ozcan, Jignesh Patel, Andrew Pavlo, Raluca Popa, Raghu Ramakrishnan, Christopher Re, Michael Stonebraker,
and Dan Suciu. 2022. The Seattle report on database research. Commun. ACM 65, 8 (Aug. 2022), 72-79. doi:10.1145/3524284

[6] Mohammad Alian, Seung Won Min, Hadi Asgharimoghaddam, Ashutosh Dhar, Dong Kai Wang, Thomas Roewer, Adam McPadden,
Oliver O’Halloran, Deming Chen, Jinjun Xiong, Daehoon Kim, Wen-mei Hwu, and Nam Sung Kim. 2018. Application-Transparent
Near-Memory Processing Architecture with Memory Channel Network. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 802-814. doi:10.1109/MICRO.2018.00070

= s

ACM Trans. Arch. Code

https://duckdb.org/docs/sql/indexes.html
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.1.pdf
https://www.emergenresearch.com/request-sample/467
https://www.alliedmarketresearch.com/in-memory-database-market-A31497
https://doi.org/10.1145/3524284
https://doi.org/10.1109/MICRO.2018.00070

(7]

[22]
(23]

[24]

[25]

[26]

[27]

Membrane: Accelerating Database Analytics with DRAM-Based PIM Filtering and Schema Denormalization « 21

Johnathan Alsop, Shaizeen Aga, Mohamed Ibrahim, Mahzabeen Islam, Andrew Mccrabb, and Nuwan Jayasena. 2024. Inclusive-
PIM: Hardware-Software Co-design for Broad Acceleration on Commercial PIM Architectures. (2024). arXiv:2309.07984 [cs.AR]
d0i:10.48550/arXiv.2309.07984

Peter Bakkum and Kevin Skadron. 2010. Accelerating SQL Database Operations on a GPU with CUDA. In Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units (GPGPU). 94-103. doi:10.1145/1735688.1735706

Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Ozsu. 2013. Main-memory hash joins on multi-core CPUs: Tuning to the
underlying hardware. In 2013 IEEE 29th International Conference on Data Engineering (ICDE). 362-373. doi:10.1109/ICDE.2013.6544839
Robert Basmadjian, Nasir Ali, Florian Niedermeier, Hermann de Meer, and Giovanni Giuliani. 2011. A methodology to predict the power
consumption of servers in data centres. In Proceedings of the 2nd International Conference on Energy-Efficient Computing and Networking
(New York, New York, USA) (e-Energy ’11). Association for Computing Machinery, New York, NY, USA, 1-10. doi:10.1145/2318716.2318718
Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and evaluation of main memory hash join algorithms for multi-core CPUs.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data (Athens, Greece) (SIGMOD ’11). Association
for Computing Machinery, New York, NY, USA, 37-48. doi:10.1145/1989323.1989328

Haran Boral and David] DeWitt. 1983. Database Machines: An Idea Whose Time Has Passed? A Critique of the Future of Database
Machines.

Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur Mutlu. 2022. Polynesia: Enabling High-Performance and Energy-
Efficient Hybrid Transactional/Analytical Databases with Hardware/Software Co-Design. In 2022 IEEE 38th International Conference on
Data Engineering (ICDE). 2997-3011. doi:10.1109/ICDE53745.2022.00270

Kevin K. Chang, Prashant J. Nair, Donghyuk Lee, Saugata Ghose, Moinuddin K. Qureshi, and Onur Mutlu. 2016. Low-Cost Inter-Linked
Subarrays (LISA): Enabling fast inter-subarray data movement in DRAM. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 568-580. doi:10.1109/HPCA.2016.7446095

Craig Chasseur and Jignesh M. Patel. 2013. Design and Evaluation of Storage Organizations for Read-Optimized Main Memory Databases.
Proc. VLDB Endow. 6, 13 (aug 2013), 1474-1485. doi:10.14778/2536258.2536260

Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B. Brockman, and Norman P. Jouppi. 2012. CACTI-3DD: Architecture-level
modeling for 3D die-stacked DRAM main memory. In Proceedings of the Design, Automation & Test in Europe Conference (DATE). 33-38.
doi:10.1109/DATE.2012.6176428

Xinyu Chen, Yao Chen, Ronak Bajaj, Jiong He, Bingsheng He, Weng-Fai Wong, and Deming Chen. 2020. Is FPGA Useful for Hash Joins?.
In 10th Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p27-chen-cidr20.pdf

Clickhouse. 2023. https://clickhouse.com/docs/en/getting-started/example-datasets/star-schema.

Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park, and David J. DeWitt. 2013. Query processing on smart
SSDs: opportunities and challenges. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data (New York,
New York, USA) (SIGMOD °13). Association for Computing Machinery, New York, NY, USA, 1221-1230. doi:10.1145/2463676.2465295
Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020. Quantifying TPC-H Choke Points and Their Optimizations.
Proc. VLDB Endow. 13, 8 (apr 2020), 1206-1220. doi:10.14778/3389133.3389138

Zigiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. 2015. ByteSlice: Pushing the Envelop of Main Memory Data Processing with a New
Storage Layout. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (Melbourne, Victoria, Australia)
(SIGMOD °15). Association for Computing Machinery, New York, NY, USA, 31-46. doi:10.1145/2723372.2747642

Franz Farber, Norman May, Wolfgang Lehner, Philipp Grofie, Ingo Miiller, Hannes Rauhe, and Jonathan Dees. 2012. The SAP HANA
database - An architecture overview. IEEE Data Eng. Bull. 35 (03 2012), 28-33.

Kevin P. Gaffney, Martin Prammer, Larry Brasfield, D. Richard Hipp, Dan Kennedy, and Jignesh M. Patel. 2022. SQLite: Past, Present,
and Future. Proc. VLDB Endow. 15, 12 (aug 2022), 3535-3547. doi:10.14778/3554821.3554842

Abraham Gonzalez, Aasheesh Kolli, Samira Khan, Sihang Liu, Vidushi Dadu, Sagar Karandikar, Jichuan Chang, Krste Asanovic, and
Parthasarathy Ranganathan. 2023. Profiling Hyperscale Big Data Processing. In Proceedings of the 50th Annual International Symposium
on Computer Architecture (Orlando, FL, USA) (ISCA °23). Association for Computing Machinery, New York, NY, USA, Article 47, 16 pages.
doi:10.1145/3579371.3589082

Juan Gmez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur Mutlu. 2021. Benchmarking Memory-
Centric Computing Systems: Analysis of Real Processing-In-Memory Hardware. In 2021 12th International Green and Sustainable
Computing Conference (IGSC). 1-7. doi:10.1109/IGSC54211.2021.9651614

Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Jodo Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser,
Saugata Ghose, Juan Gémez-Luna, and Onur Mutlu. 2021. SIMDRAM: a framework for bit-serial SIMD processing using DRAM. In
Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (Virtual,
USA) (ASPLOS °21). Association for Computing Machinery, New York, NY, USA, 329-345. doi:10.1145/3445814.3446749

Ben Hannel and Kevin Leong. [n. d.]. Rockset Performance Evaluation on the Star Schema Benchmark. https://rockset.com/Rockset_
Star_Schema_Benchmark_April2022.pdf

ACM Trans. Arch. Code

https://arxiv.org/abs/2309.07984
https://doi.org/10.48550/arXiv.2309.07984
https://doi.org/10.1145/1735688.1735706
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1145/2318716.2318718
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1109/ICDE53745.2022.00270
https://doi.org/10.1109/HPCA.2016.7446095
https://doi.org/10.14778/2536258.2536260
https://doi.org/10.1109/DATE.2012.6176428
http://cidrdb.org/cidr2020/papers/p27-chen-cidr20.pdf
https://doi.org/10.1145/2463676.2465295
https://doi.org/10.14778/3389133.3389138
https://doi.org/10.1145/2723372.2747642
https://doi.org/10.14778/3554821.3554842
https://doi.org/10.1145/3579371.3589082
https://doi.org/10.1109/IGSC54211.2021.9651614
https://doi.org/10.1145/3445814.3446749
https://rockset.com/Rockset_Star_Schema_Benchmark_April2022.pdf
https://rockset.com/Rockset_Star_Schema_Benchmark_April2022.pdf

22

(28]

[29]
(30]
(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

(45]

(46]

« A.Shekar et al.

Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho Kim, Il Park, Mithuna Thottethodi, and T. N. Vijaykumar. 2020. Newton:
A DRAM-maker’s Accelerator-in-Memory (AiM) Architecture for Machine Learning. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 372-385. d0i:10.1109/MICR0O50266.2020.00040

Intel. 2023. Intel In-Memory Analytics Accelerator Architecture Specification. https://www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html.

Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing an Open Framework for Query Optimization and Compilation. Proc.
VLDB Endow. 15, 11 (jul 2022), 2389-2401. doi:10.14778/3551793.3551801

Aarati Kakaraparthy, Jignesh M. Patel, Brian P. Kroth, and Kwanghyun Park. 2022. VIP Hashing: Adapting to Skew in Popularity of
Data on the Fly. Proc. VLDB Endow. 15, 10 (jun 2022), 1978-1990. doi:10.14778/3547305.3547306

Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shin-Haeng Kang, Sukhan Lee, Songyi Han, YeonGon Cho, Jin Hyun Kim, Yongsuk Kwon,
KyungSoo Kim, Jin Jung, lkwon Yun, Sung Joo Park, Hyunsun Park, Joonho Song, Jeonghyeon Cho, Kyomin Sohn, Nam Sung Kim, and
Hsien-Hsin S. Lee. 2022. Near-Memory Processing in Action: Accelerating Personalized Recommendation With AxDIMM. IEEE Micro
42,1 (2022), 116-127. doi:10.1109/MM.2021.3097700

Ralph Kimball and Margy Ross. 2002. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (2nd ed ed.). Wiley,
New York.

Jens Krueger, Changkyu Kim, Martin Grund, Nadathur Satish, David Schwalb, Jatin Chhugani, Hasso Plattner, Pradeep Dubey, and
Alexander Zeier. 2011. Fast Updates on Read-Optimized Databases Using Multi-Core CPUs. Proc. VLDB Endow. 5, 1 (sep 2011), 61-72.
doi:10.14778/2047485.2047491

Daehan Kwon, Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joonhong Park, Gi-Moon Hong, Dongyoon Ka, Kyudong Hwang, Jeongje Park,
Kyeongpil Kang, Jungyeon Kim, Junyeol Jeon, Nahsung Kim, Yongkee Kwon, Vladimir Kornijcuk, Woojae Shin, Jongsoon Won, Minkyu
Lee, Hyunha Joo, Haerang Choi, Guhyun Kim, Byeongju An, Jaewook Lee, Donguc Ko, Younggun Jun, Ilwoong Kim, Choungki Song, Ilkon
Kim, Chanwook Park, Seho Kim, Chunseok Jeong, Euicheol Lim, Dongkyun Kim, Jieun Jang, Il Park, Junhyun Chun, and Joohwan Cho.
2023. A 1ynm 1.25V 8Gb 16Gb/s/Pin GDDR6-Based Accelerator-in-Memory Supporting 1TFLOPS MAC Operation and Various Activation
Functions for Deep Learning Application. IEEE Journal of Solid-State Circuits 58, 1 (2023), 291-302. doi:10.1109/JSSC.2022.3200718
Donghun Lee, Jinin So, MINSEON AHN, Jong-Geon Lee, Jungmin Kim, Jeonghyeon Cho, Rebholz Oliver, Vishnu Charan Thummala,
Ravi shankar JV, Sachin Suresh Upadhya, Mohammed Ibrahim Khan, and Jin Hyun Kim. 2022. Improving In-Memory Database
Operations with Acceleration DIMM (AxDIMM). In Proceedings of the 18th International Workshop on Data Management on New
Hardware (Philadelphia, PA, USA) (DaMoN ’22). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages.
doi:10.1145/3533737.3535093

Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim,
Hyunsung Shin, Jinhyun Kim, O Seongil, Anand Iyer, David Wang, Kyomin Sohn, and Nam Sung Kim. 2021. Hardware Architecture and
Software Stack for PIM Based on Commercial DRAM Technology : Industrial Product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 43-56. doi:10.1109/ISCA52012.2021.00013

Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, Shuangchen Li, Yuan Xie, Ameen Akel, Sean Eilert, Mircea R. Stan, and Kevin
Skadron. 2020. Fulcrum: A Simplified Control and Access Mechanism Toward Flexible and Practical In-Situ Accelerators. In 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA). 556-569. doi:10.1109/HPCA47549.2020.00052
Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016. Pinatubo: A processing-in-memory architecture for
bulk bitwise operations in emerging non-volatile memories. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1-6.
doi:10.1145/2897937.2898064

Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2020. DRAMsim3: A Cycle-Accurate, Thermal-Capable
DRAM Simulator. [EEE Computer Architecture Letters 19, 2 (2020), 106-109. doi:10.1109/LCA.2020.2973991

Yinan Li and Jignesh M. Patel. 2013. BitWeaving: fast scans for main memory data processing. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (New York, New York, USA) (SIGMOD °13). Association for Computing Machinery, New
York, NY, USA, 289-300. doi:10.1145/2463676.2465322

Yinan Li and Jignesh M. Patel. 2014. WideTable: An Accelerator for Analytical Data Processing. Proceedings of the VLDB Endowment 7,
10 (June 2014), 907-918. doi:10.14778/2732951.2732965

Chaemin Lim, Suhyun Lee, Jinwoo Choi, Jounghoo Lee, Seongyeon Park, Hanjun Kim, Jinho Lee, and Youngsok Kim. 2023. Design and
Analysis of a Processing-in-DIMM Join Algorithm: A Case Study with UPMEM DIMMs. Proc. ACM Manag. Data 1, 2, Article 113 (jun
2023), 27 pages. doi:10.1145/3589258

Zezhou Liu and Stratos Idreos. 2016. Main Memory Adaptive Denormalization. In Proceedings of the 2016 International Conference
on Management of Data (San Francisco, California, USA) (SIGMOD °’16). Association for Computing Machinery, New York, NY, USA,
2253-2254. doi:10.1145/2882903.2914835

Micron Technology, Inc. 2025. NVDIMM | Micron Technology Inc. https://www.micron.com/products/memory/dram-modules/nvdimm.
Accessed: 2025-06-29.

Samsung Advanced Institute of Technology. [n.d.]. SAIT’s PIMSimulator. https://github.com/SAITPublic/PIMSimulator.

ACM Trans. Arch. Code

https://doi.org/10.1109/MICRO50266.2020.00040
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.14778/3551793.3551801
https://doi.org/10.14778/3547305.3547306
https://doi.org/10.1109/MM.2021.3097700
https://doi.org/10.14778/2047485.2047491
https://doi.org/10.1109/JSSC.2022.3200718
https://doi.org/10.1145/3533737.3535093
https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1109/HPCA47549.2020.00052
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1145/2463676.2465322
https://doi.org/10.14778/2732951.2732965
https://doi.org/10.1145/3589258
https://doi.org/10.1145/2882903.2914835
https://www.micron.com/products/memory/dram-modules/nvdimm
https://github.com/SAITPublic/PIMSimulator

(47]
(48]

Membrane: Accelerating Database Analytics with DRAM-Based PIM Filtering and Schema Denormalization « 23

P. O’Neil, E. O'Neil, and X. Chen. 2007. The Star Schema Benchmark. http://www.cs.umb.edu/~poneil/StarSchemaB.pdf.
Philippos Papaphilippou and Wayne Luk. 2018. Accelerating Database Systems Using FPGAs: A Survey. In 2018 28th International
Conference on Field Programmable Logic and Applications (FPL). 125-1255. doi:10.1109/FPL.2018.00030

[49] Jignesh M. Patel, Harshad Deshmukh, Jiangiao Zhu, Navneet Potti, Zuyu Zhang, Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh.

(50]
[51]

(52]

(53]

(54]

(55]

[57

—

(58]

(59]
[60]
[61]

[62]

(63]

2018. Quickstep: A Data Platform Based on the Scaling-up Approach. Proc. VLDB Endow. 11, 6 (oct 2018), 663-676. do0i:10.14778/3184470.
3184471

Mark Raasveldt and Hannes Mithleisen. 2019. DuckDB: An Embeddable Analytical Database. In Proceedings of the 2019 International
Conference on Management of Data. ACM, Amsterdam Netherlands, 1981-1984. doi:10.1145/3299869.3320212

Vijayshankar Raman, Garret Swart, Lin Qiao, Frederick Reiss, Vijay Dialani, Donald Kossmann, Inderpal Narang, and Richard Sidle. 2008.
Constant-Time Query Processing. In 2008 IEEE 24th International Conference on Data Engineering. 60-69. doi:10.1109/ICDE.2008.4497414
Paulo C. Santos, Geraldo F. Oliveira, Diego G. Tomé, Marco A. Z. Alves, Eduardo C. de Almeida, and Luigi Carro. 2017. Operand size
reconfiguration for big data processing in memory. In Design, Automation & Test in Europe Conference & Exhibition, DATE 2017, Lausanne,
Switzerland, March 27-31, 2017, David Atienza and Giorgio Di Natale (Eds.). IEEE, 710-715. doi:10.23919/DATE.2017.7927081

Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory. In
Proceedings of the 2016 International Conference on Management of Data (San Francisco; California, USA) (SIGMOD ’16). Association for
Computing Machinery, New York, NY, USA, 1961-1976. doi:10.1145/2882903.2882917

Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu,
Phillip B. Gibbons, and Todd C. Mowry. 2017. Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM
Technology. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture (Cambridge, Massachusetts)
(MICRO-50 ’17). Association for Computing Machinery, New York, NY, USA, 273-287. do0i:10.1145/3123939.3124544

Utku Sirin and Anastasia Ailamaki. 2020. Micro-architectural Analysis of OLAP: Limitations and Opportunities. Proceedings of the
VLDB Endowment 13, 6 (2020), 840—853. d0i:10.14778/3380750.3380755

StarRocks. 2023. https://docs.starrocks.io/en-us/2.5/benchmarking/ SSB_Benchmarking.

Aaron Stillmaker, Zhibin Xiao, and Bevan M. Baas. 2012. Toward More Accurate Scaling Estimates of CMOS Circuits from 180 nm to 22
nm. Univ. of California-Davis Tech. Report ECE-VCL-2011-4.

Liwen Sun, Michael J. Franklin, Sanjay Krishnan, and Reynold S. Xin. 2014. Fine-grained partitioning for aggressive data skipping. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association
for Computing Machinery, New York, NY, USA, 1115-1126. doi:10.1145/2588555.2610515

Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander Zeier, and Jan Schaffner. 2009. SIMD-scan: ultra fast
in-memory table scan using on-chip vector processing units. Proc. VLDB Endow. 2, 1 (Aug. 2009), 385-394. d0i:10.14778/1687627.1687671
Louis Woods, Zsolt Istvan, and Gustavo Alonso. 2014. Ibex: an intelligent storage engine with support for advanced SQL offloading. 7,
11 (July 2014), 963-974. doi:10.14778/2732967.2732972

Wm. A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall: Implications of the Obvious. SIGARCH Computer Architecture News
23, 1 (Mar 1995), 20-24. doi:10.1145/216585.216588

Sam Likun Xi, Aurelia Augusta, Manos Athanassoulis, and Stratos Idreos. 2015. Beyond the Wall: Near-Data Processing for Databases.
In Proceedings of the 11th International Workshop on Data Management on New Hardware (Melbourne, VIC, Australia) (DaMoN’15).
Association for Computing Machinery, New York, NY, USA, Article 2, 10 pages. doi:10.1145/2771937.2771945

Daniel Ziener, Florian Bauer, Andreas Becher, Christopher Dennl, Klaus Meyer-Wegener, Ute Schiirfeld, Jirgen Teich, Jérg-Stephan
Vogt, and Helmut Weber. 2016. FPGA-Based Dynamically Reconfigurable SQL Query Processing. 9, 4, Article 25 (Aug. 2016), 24 pages.
doi:10.1145/2845087

Received 14 September 2025; revised 24 November 2025; accepted 7 December 2025

ACM Trans. Arch. Code

http://www.cs.umb.edu/~poneil/StarSchemaB.pdf
https://doi.org/10.1109/FPL.2018.00030
https://doi.org/10.14778/3184470.3184471
https://doi.org/10.14778/3184470.3184471
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1109/ICDE.2008.4497414
https://doi.org/10.23919/DATE.2017.7927081
https://doi.org/10.1145/2882903.2882917
https://doi.org/10.1145/3123939.3124544
https://doi.org/10.14778/3380750.3380755
https://doi.org/10.1145/2588555.2610515
https://doi.org/10.14778/1687627.1687671
https://doi.org/10.14778/2732967.2732972
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/2771937.2771945
https://doi.org/10.1145/2845087

	Abstract
	1 Introduction
	2 Background
	2.1 OLAP database systems
	2.2 DRAM

	3 Mapping Data Analytics to PIM
	3.1 PIM architecture requirements for data analytics
	3.2 PIM Amenability Tests

	4 PIM Architectures
	4.1 Bank-level Filtering Unit (BFU)
	4.2 Subarray-level Filtering
	4.3 Rank-level and Channel-level Filtering
	4.4 System Integration

	5 Experimental Methodology
	6 Results
	6.1 Filter Performance Across DRAM Hierarchy
	6.2 Partial denormalization enables more extensive acceleration
	6.3 Speedup tends to increase as database size increases
	6.4 Speedup tends to increase as PIM selectivity decreases

	7 Related Work
	8 Conclusions
	9 Acknowledgements
	References

