
Deriving State-Based Test Oracles for Conformance Testing

James H. Andrews
Department of Computer Science

University of Western Ontario
London, Ontario, CANADA N6A 5B7

Abstract

We address the problem of how to instrument code to
log events for conformance testing purposes, and how to
write test oracles that process log files. We specifically
consider oracles written in languages based on the state-
machine formalism. We describe two processes for sys-
tematically deriving logging code and oracles from re-
quirements. The first is a process that we have used and
taught, and the second is a more detailed process that we
propose to increase the flexibility and traceability of the
first process.

1. Introduction

Testing can be made more automated and reliable by
the use of test oracles, programs that check the output
of other programs. In situations where it is infeasible to
capture program input/output directly, the software under
test (SUT) must write text log files of events. The oracles
that process these log files are then referred to as log file
analyzers.

In contrast to other dynamic analysis tasks, the SUT
instrumentation needed for writing log files is often de-
pendent on the requirements, and thus cannot be added
automatically. The same is true for the log file analyzers.
We are therefore faced with the problem of how to insert
logging instrumentation manually and how to write log
file analyzers. This paper addresses these problems.

We have recently been studying a method of log file
analysis (LFA) in which oracles are written in a language
(LFAL) based on state machines. Our experiences of
writing these oracles have led to a recommended process
for moving from requirements to oracles and logging in-
strumentation. We describe this process in Section 3 be-
low, and report on our experiences of using and teach-
ing it. We have noticed some deficiencies in this pro-
cess, however, and for this workshop we propose a new,
more detailed process (Section 4) with the advantages of
greater flexibility and traceability.

We do not believe that LFA testing can or should re-
place all traditional verification and validation activities,
but rather that it can act as a complement to traditional

methods, enhancing them by enhancing the reliability of
test result checking. We take account of this in our pro-
posed processes. Section 5 discusses the potential ben-
efits and problems of LFA testing, especially with refer-
ence to the proposed development processes. We begin,
however, with a discussion of the background of this pa-
per.

2. Background

Testing involves selecting test cases, running the test
cases on the SUT, and checking the results. This paper
deals primarily with test result checking. Here we answer
the questions of why test oracles are necessary, what ad-
vantages we get by running test oracles on log files, and
what motivated our decision to create a state-based lan-
guage for writing log file analyzer test oracles. We also
describe the log file analysis language LFAL and discuss
work related to this paper.

2.1. Why Test Oracles?

Test oracles [18] are needed in several common situa-
tions. The first is when test output is too complex to be
checked by a human. This is the case for applications as
diverse as communication protocol software and safety-
critical control software.

When a test case has been run once and the output has
been confirmed as correct, a common practice is to store
that output as a “gold file” for regression testing. When
the same test case is run on a new version of the software,
the new output is checked to see if it is the same as the
“gold” output. However, it may be valid that the new out-
put is different. This can be the case, for instance, if the
relative timing of distributed events changes slightly.

Finally, modern computer systems are often subjected
to random testing, stress testing or load testing. In such
cases, input and system behaviour may not be completely
predictable, and the volume of output may be high.

In all of the cases mentioned above, test result check-
ing must typically be more complex than a simple equal-
ity check of output against stored output. The phrase “test
oracle” is usually reserved for programs that do such more
complex analysis of output.



2.2. Why Log Files?

Although test oracles are useful, it is often difficult to
capture software input and output directly, and difficult to
extract relevant information from captured I/O. The use of
text log files addresses these difficulties. Text log files are
already in wide use in industry, where they are sometimes
referred to as “debug files” or “debug logs”.

Modern software has many diverse inputs and outputs,
including mouse input, graphical output, and network and
file I/O. This can be difficult to monitor directly unless the
software is launched within a platform-specific OS-level
sandbox that intercepts all I/O. If instead the SUT itself
logs relevant information to a text file, inputs and outputs
of diverse devices can be recorded indirectly.

The volume and complexity of I/O can cause prob-
lems for direct I/O capture as well. If only some as-
pects of correctness are to be checked by a test oracle,
it may be that only a small part of the actual I/O of a
system is needed for checking. Directly captured I/O,
such as TCP/IP output of a program, may need to be re-
parsed and re-interpreted to see whether given high-level
events to be checked for have happened. If, instead, se-
lected high-level events are logged to a text file, a smaller
amount of focused, easily-parsed information is available.

2.3. Why State-Based Log File Analyzers?

We refer to a test oracle that processes only log files
as a log file analyzer. Log file analyzers can be written in
any programming language, but we have come to believe
that languages based on the state machine formalism are
the best fit for the task, for three main reasons.

First, we observed that log file analyzers often had
to store information about past events in order to detect
conformance violations when future events happen. This
was sometimes information about which of several dis-
crete states the SUT was in, and sometimes more com-
plex information about numeric and string values appear-
ing in log file lines. This suggests a programming lan-
guage based on state machines, although the need to also
store more complex information suggests that something
more than simple finite state machines (FSMs) is needed.

Second, we observed that log files often contain many
interleaved streams of information about the SUT, but that
checking any one requirement typically involved only a
subset of this information. This suggests a programming
language in which the checking of separate requirements
is assigned to separate state machines.

Third, the state machine formalism is widely-known
and used in software engineering in other contexts, such
as UML state activity diagrams. The extensions needed
for storing more complex information and specifying
more than one machine are not major.

2.4. LFAL

We have developed a simple domain-specific language
called LFAL (Log File Analysis Language) for writing
log file analyzers [5]. LFAL is based on the state machine
formalism; however, an LFAL analyzer is not an FSM,
but rather a collection of (infinite-)state machines running
in parallel, in which the states can be any first order terms
[6], and in which each machine makes transitions from
state to state based on first order terms representing com-
plete log file lines. Conditions on source states and trig-
gering log file lines can be placed on transitions.

LFAL analyzers assume that each log file line starts
with a keyword and continues with any number of key-
words, strings, integers and real numbers, separated by
spaces. Each analyzer machine typically checks confor-
mance to one SUT requirement or a group of related re-
quirements, and notices only a subset of the lines in the
log file. If an analyzer machine notices a log file line but
has no valid transition on it, it reports an error. We write
the state machines for a given analyzer so that this hap-
pens if and only if the log file being analyzed shows that a
requirement has been violated. (An example of an LFAL
analyzer will be developed in Section 3.)

2.5. Related Work

The relation of log file analysis to other work in dis-
tributed systems debugging, formal specification, test or-
acle generation, and assertions is explored in detail in [5].
Because our focus here is on the process by which an LFA
test oracle is developed from requirements, we compare
this work to similar work in development of formal spec-
ifications.

Many papers have dealt with the issue of deriving for-
mal specifications from informal requirements. The tar-
get formal specification technologies have included tabu-
lar notations [16], the Z specification language [11], the
SCR specification methodology [12], and statecharts [9].
These works share a general pattern of describing how
to move from informal requirements systematically to the
notation or technology in question. In this paper, we fol-
low a similar pattern, concentrating on state machines and
providing more detail about intermediate steps required.
In addition, the artifact that we end with (the log file ana-
lyzer) can be viewed as a formal specification, but is also
a program that can be compiled and run for the purpose
of test result checking.

Work has been done on deriving requirements and or-
acles from traces produced by automatic instrumentation
[8], although as yet the requirements produced are rel-
atively simple. Some criteria have also been stated for
inserting logging instrumentation for the specific purpose
of performance profiling [14].

Finally, Cleanroom and other processes based on it
[15, 17] share with the processes described here the prac-
tice of generating a traceable sequence of artifacts of



increasing formality from requirements. In Cleanroom,
however, the final artifact is the code itself, and here we
are concerned only with a test oracle, which may repre-
sent only some of the requirements.

3. Big-Step Process

In this section, we describe a process for deriving log-
ging instrumentation and state-based test oracles from re-
quirements. This process is a distillation of practices that
we have followed on previous projects. We call this pro-
cess the big-step process because it involves users tak-
ing bigger steps of inference between artifacts than in the
small-step process to be described later.

We first describe an example we will use in this paper
for expository purposes. We then describe the central ar-
tifact of the big-step process, the SPFEs (Situations with
Permitted and Forbidden Events), and then go on to de-
scribe the process as a whole. We then report on experi-
ences we have had with using and teaching the big-step
process, and point out some issues that we have with it.

3.1. Example Software and Requirements

The example software that we will use in this paper
for expository purposes is a hypothetical controller for an
elevator. We assume that the controller controls both the
doors and the motion of the elevator, and we consider the
following two requirements.

� R1. The doors are never open when the elevator is in
motion.

� R2. Under normal conditions, the elevator door
never stays open more than 30 seconds.

The phrase “under normal conditions” in requirement R2
is deliberately vague; we will use it to illustrate how the
big-step and small-step processes handle uncertainty in
requirements.

3.2. SPFEs

Figure 1 summarizes the big-step process. The central
artifact of the process is a list of Situations with Permitted
and Forbidden Events (SPFEs). The SPFEs form a link
between the language of the requirements and the con-
cepts of state machines.

Each SPFE consists of a situation that the software or
its environment may be in, a possibly empty list of events
that are permitted in that situation, and a possibly empty
list of events that are forbidden in that situation. We use
the word “situation” here instead of “state” to avoid con-
fusion with the concept of state-machine states, although
we expect that situations in the SPFEs will have a close
correspondence with states in the log file analyzer.

SPFEs are best illustrated with some examples. For
requirement R1 listed above, a possible set of SPFEs is as
follows.

� SPFE1.

– Situation S1: The elevator door is open.

– Permitted event P1.1: The door closes.

– Forbidden event F1.2: The elevator starts mov-
ing.

� SPFE2.

– Situation S2: The elevator is moving.

– Permitted event P2.1: The elevator stops mov-
ing.

– Forbidden event F2.2: The door opens.

� SPFE3.

– Situation S3: The elevator is stopped and the
door is closed.

– Permitted event P3.1: The elevator starts mov-
ing.

– Permitted event P3.2: The door opens.

Requirement R2 listed above can be captured by a single
SPFE.

� SPFE4.

– Situation S4: The door last opened at time
� �

and is still open.

– Permitted event P4.1: The door closes at time
� �

, where
� � � � � 
 � �

.

– Forbidden event P4.2: The door closes at time
� �

, where
� � � � � � � �

.

Note that in writing the above SPFE, we have implicitly
assumed that we are going to use the log file analyzer
only when we test the SUT under the “normal conditions”
mentioned in requirement R2. This assumption is made
more explicit and traceable under the more detailed pro-
cess described in Section 4.

3.3. Process

The flow of information and the sequence of artifacts
produced in the big-step process follows the general pat-
tern of Figure 1. The steps of the process are:

1. From the requirements of the system, derive the
SPFEs. The SPFEs should not contradict the re-
quirements, although they can represent only a sub-
set of the requirements if the LFA testing is not in-
tended to cover all requirements.

2. Based on the SPFEs, write a logging policy (LP).
The logging policy should specify what events the
source code should log and how it should log them.
This should include:



Abbr Expansion
Reqs Requirements
SPFEs Situations with Permitted and Forbidden Events
LP Logging Policy
LFAP Log File Analyzer Program

LFAP LP

Reqs

SPFEs

Figure 1. Big-step process summary. Left: Artifact abbreviations and their expansions. Right:
Information flow. An arrow indicates that the arrow source is a primary source of information for
the arrow destination.

(a) All events that will allow us to determine, for
each SPFE, whether we are in the described sit-
uation;

(b) All events that are mentioned as “permitted” or
“forbidden” in any SPFE.

3. Instrument the source code consistent with the LP.

4. Based on the SPFEs and the logging instrumenta-
tion, write and validate the log file analyzer.

In step 1, we do not require every possible event rele-
vant to an SPFE to be listed as either permitted or forbid-
den, although such a requirement would make the SPFEs
more precise. We do this in order to make this step less
constrained. If there are particular events that are clearly
permitted or clearly forbidden in given situations, then
they can be listed as such in the SPFEs, in order to give
guidance during steps 2-4. The other events can temporar-
ily be left with their permittedness undefined. Whether
they are permitted or forbidden can then be decided when
the analyzer is written in step 4.

We now expand upon steps 2, 3 and 4 above. Step
2 requires us to write a logging policy, and step 3 re-
quires us to implement this policy. In our example, if
we were considering only SPFE2, we would only need
to determine whether the elevator is currently moving or
not (S2), whether the elevator has stopped moving (P2.1),
and whether the door has opened (F2.2). A sufficient set
of events to be logged would be:

� Events in which the elevator starts moving. (Needed
to determine whether we are in S2.)

� Events in which the elevator stops moving. (Needed
to determine whether we are in S2, and whether P2.1
has occurred.)

� Events in which the door opens. (Needed to deter-
mine whether F2.2 has occurred.)

However, for all of SPFE1-4, more events are needed and
more data is needed about events in which the door opens.
The following set of events is sufficient:

� Events in which the elevator starts moving. (Needed
for S2, S3, F1.2, P3.1.)

� Events in which the elevator stops moving. (Needed
for S2, S3, P2.1.)

� Events in which the door opens, together with the
time the door opens. (Needed for S1, S3, S4, F2.2,
P3.2.)

� Events in which the door closes, together with the
time the door closes. (Needed for S1, S3, P1.1, P4.1,
P4.2.)

The logging policy should state explicitly what format the
given events should be logged in. For example, we could
say that the SUT must record the above events by logging
lines of the form start_move, stop, door_open � ,
and door_close � respectively, where � is a timestamp.

Step 4 of the big-step process requires us to write a log
file analyzer. Generally, each analyzer machine is likely
to correspond to one or a group of SPFEs, with the Situ-
ations corresponding to states of the machine. For exam-
ple, it is possible to check all of SPFE1-3 with a single
LFAL state machine:

machine door_safety;
initial_state closed_stopped;
from closed_stopped, on start_move,
to moving;

from moving, on stop,
to closed_stopped;

from closed_stopped, on door_open(T),
to open;

from open, on door_close(T),
to closed_stopped;

final_state Any.

The three states of this machine (open, moving, and
closed_stopped) correspond to the Situations in
SPFE1-3 respectively. As an example of the treatment of
forbidden events, there is no transition on the log file line
door_close � from the state open, because that log



file line corresponds to an event which is Forbidden by
SPFE1; however, there is a transition on the log file line
door_open � , which is a Permitted event. It is possible
to check SPFE4 with one additional LFAL state machine:

machine door_close_timing;
initial_state closed;
from closed, on door_open(T1),
to open(T1);

from open(T1), on door_close(T2),
if (T2-T1 =< 30), to closed;

final_state Any.

Note that the state pattern open(T1) contains not only
the information that the door is open, but also the time at
which the door was opened as a parameter of the state.

3.4. Experiences

We used early, informal versions of the big-step pro-
cess for several previous projects [4, 2, 13]. The largest
analyzer developed and validated was based on the first
eight pages of Abrial’s Steam Boiler specification [1], and
was 333 net lines of LFAL code, containing 19 state ma-
chines having a total of 141 transitions. Based on our
experiences with those projects, we codified the process
for training purposes.

In [10], we reported on an exploratory study of learn-
ing and initial use of LFA testing and LFAL. The process
for developing log file analyzers which we taught to the
learners in this study was the big-step process. We did not
monitor how closely they actually followed the process in
the study. However, we found that they performed well at
the tasks of creating a logging policy, instrumenting code
with logging instrumentation, and writing an LFAL log
file analyzer.

3.5. Issues

Several issues have come up during our use and teach-
ing of the big-step process that we feel are not handled
well by the process. One issue is that it contains no rec-
ommendations for what to do when not all the require-
ments will be checked by LFA testing. We expect that
LFA testing will often be used as a complement to tradi-
tional testing; that is, not to test all the requirements of a
system using LFA, but only a subset, and those only under
given conditions. With the big-step process, the decisions
made in this regard (e.g. the decision to test the exam-
ple system only “under normal conditions”) are nowhere
explicit.

A related issue is lack of documentation and traceabil-
ity. There is a lack of documentation of the requirements
to be checked, the conditions under which LFA testing
will take place, and why given events were chosen to be
logged. This makes it more difficult to validate big-step
process artifacts, e.g. in artifact inspection sessions [7].

Finally, we have noted that in some cases it is difficult
to find places in the SUT code at which to log the events

needed for the SPFEs. In some cases, the events needed
are in a sense “abstract”, not able to be matched directly
to locations in the code but rather indicating a general
pattern of things that have occurred. In these cases we
have found that the logging policy is difficult to match up
with the SPFEs, the instrumentation in the source code,
or both.

These issues are not major if the number of events to
be logged or the number of requirements to be checked
is small, or in cases of non-critical software. We expect
them to be more significant as the number of events or
requirements grows and the SUT is more safety-critical.

4. Small-Step Methodology

In this section we propose a process for deriving state
machine oracles and logging instrumentation that avoids
some of the pitfalls of the big-step process. Because it
takes smaller steps toward the production of the final ar-
tifacts, we refer to it in this paper as the small-step pro-
cess. It is derived from practices that we have used and
observed in the past for making the big-step process more
manageable.

We expect the small-step process to be more useful the
more the following conditions hold in the development
project in question.

� The project is safety-critical, and we want high as-
surance that requirements are reflected in the test or-
acle.

� Only a subset of the requirements is to be tested us-
ing LFA, and/or LFA testing is only to be done under
certain conditions.

� The number of events we need to log is high.

� The requirements to be checked are complex.

� The developers are unfamiliar with using log file
analysis for conformance testing, and want to follow
a detailed process so that they can learn it.

Figure 2 summarizes the small-step process. The pro-
cess is similar to the big-step process, but with some im-
portant additions for the sake of traceability and general-
ity:

� RCs (Requirements to be Checked): the subset of the
original requirements that is to be checked with the
LFA testing.

� CAs (Checking Assumptions): the assumptions un-
der which the LFA testing will take place.

� AEs (Abstract Events): all the events that will al-
low us to tell whether or not we are in the Situations
in the SPFEs, and whether or not the Permitted and
Forbidden events of the SPFEs have happened.



Abbr Expansion
RCs Requirements to be Checked
CAs Checking Assumptions
SPFEs Situations with Permitted and Forbidden Events
AEs Abstract Events
CEs Concrete Events
LP Logging Policy
LFAP Log File Analyzer Program

RCs CAs

SPFEs AEs CEs

LFAP LP

Figure 2. Small-step process summary. Left: Artifact abbreviations and their expansions. Right:
Information flow. An arrow indicates that the arrow source is a primary source of information for
the arrow destination.

� CEs (Concrete Events): events that are expected to
be easily identifiable and loggable at the source code
level, that allow us to tell whether or not any of the
Abstract Events (AEs) have taken place.

4.1. Small-Step Process Artifacts

We now discuss the major differences between the ar-
tifacts generated by the small-step and big-step processes.

RCs (Requirements to be Checked) and CAs (Check-
ing Assumptions). The RCs and the CAs together al-
low us to inspect the SPFEs for completeness, not just
correctness, in cases where LFA testing is used for only
some requirements and/or under some testing conditions.
The SPFEs should restate all the information in the RCs,
given the CAs.

For the elevator controller example, we might state as
checking assumptions that we will perform LFA testing
of the elevator controller only under the condition that
the door is never obstructed by some object, and that this
is what “under normal conditions” means in requirement
R2. The SPFEs chosen above under the big-step process
can then be justified by pointing out that they encompass
all the requirements to be checked, given the checking
assumptions we have made.

The small-step process is therefore more traceable than
the big-step process. Each RC should correspond to one
or more SPFEs and vice-versa, and missing details or sub-
cases not considered in the SPFEs should be able to be
justified by appealing to the CAs.

AEs (Abstract Events), CEs (Concrete Events), and
LP (Logging Policy). AEs are “requirements-level”
events, in the sense that their descriptions should be close
to the language and terminology of the SPFEs. In con-
trast, the CEs are “code-level” events, in the sense that
it should be possible to match each with one or more lo-
cations in the SUT source code at which they should be
logged. The AEs and CEs are not necessarily disjoint;

there may be some events that are both sufficiently ab-
stract to give information about the SPFEs and also suffi-
ciently concrete to be logged. Such events would be listed
as both AEs and CEs.

For our example, we might consider the doors to be
open the moment that a command is sent to the door lock
actuator to release the door from the closed position. In
this case it would be appropriate to take “door open at
time � ” as an AE, and take “door lock actuator release
command at time � ” as the CE that will be logged.

Because the CEs are explicitly documented in the
small-step process, the logging policy (LP) in the small-
step process needs only to document how and when each
CE will be logged and the format in which it will be
logged. For example, there may be a paragraph in the
LP which states:

� When a RELEASE command is sent to the door lock
actuator, the line door_lock_release_cmd �
must be logged, where � is the current timestamp in
seconds obtained from gettimeofday().

Again, the small-step process has the advantage of
greater traceability over the big-step process. Each para-
graph in the LP has to do with one or more CEs; each CE
is chosen to allow us to tell whether one or more of the
AEs has taken place; and each AE is chosen to allow us
to check specific situations and events in the SPFEs.

LFAP (Log File Analyzer Program). The analyzer
written in the small-step process is similar to that written
in the big-step process, with one exception. We expect
the analyzer to contain state machines of two main types:
event transducers and SPFE checkers.

Event transducers are relatively simple machines that
read CEs from the log file and “convert” them into AEs.
In LFAL, we can write state machines that do this by
specifying on transitions that the machine “sends” mes-
sages standing for the AEs to all the other machines. For
instance, a simple single-state machine that translates the
“door lock release command” CE into the “door open”
AE might be written as follows in LFAL:



machine transducer_door_open;
initial_state null;
from null, on door_lock_release_cmd(T1),
to null, sending door_open(T1);

final_state null.

SPFE checkers are machines that check one or more of
the requirements, as expressed in the SPFEs. The LFAL
state machines described for the big-step process in Sec-
tion 3.3 are SPFE checkers, and the machines given there
would still be appropriate under the small-step process.

4.2. Process

The small-step process starts by generating each of the
artifacts mentioned in the table at the right of Figure 2 in
that order. Any or all of these steps may cause change
requests to be filed against previously-generated artifacts.
In particular, we expect the creation of the SPFEs to cause
change requests against the RCs and CAs, the creation
of the AEs and CEs to cause change requests against the
SPFEs, and the creation of the LP and LFAP to cause
change requests against all of the SPFEs, AEs, and CEs.

We believe that a thorough development process
should include document inspections [7]. Each artifact
should be inspected for consistency with upstream arti-
facts when first created. If numerous change requests
have been made against artifacts since the last time they
were inspected, a maximally careful process would con-
duct further inspections to ensure that all artifacts remain
consistent with each other. To inspect and validate the
LFAP, we have developed tools and techniques for ani-
mating the state machines in the analyzer, to help inspec-
tors check that the analyzer is not too strict or lenient [3].

5. Potential Benefits and Problems

Every new software engineering technology brings
with it potential benefits and potential problems. Here
we enumerate what we see as the most important of both
for LFA testing.

5.1. Potential Benefits

Improved reliability. LFA testing assists direct, auto-
matic confirmation of the conformance of software to re-
quirements. This automatic test result checking can be
done in complement to traditional human checking and
regression checking of test results. The log file analyzer
can be written in a language such as LFAL designed for
the purpose, and as such can take an abstract, concise
view of the requirements.

Note also that, in contrast to other formal methods-
based techniques for increasing reliability, no assump-
tions are made as to the development language or plat-
form of the SUT. As long as the SUT can write a text file,
and that file can be transported to a platform on which it
can be analyzed, LFA can be used in testing.

Flexibility. LFA testing can be used to check for either
a small or a large number of requirements. An elevator
controller, for instance, may be a large and complex sys-
tem having many requirements; however, if only the two
example requirements are to be checked by LFA testing,
we have shown (Sections 3 and 4) that this can be done
by logging only four classes of events and writing as little
as 22 lines of LFAL code.

A developer or development team that is unsure about
whether LFA testing is appropriate can therefore use it for
part of a testing effort, and later evaluate to what extent
they wish to use it in the future.

Scalability. Our experience suggests that the number
of SPFEs generated by either the big-step or the small-
step process is linear in the number of requirements to
be checked, and that the size of the final log file analyzer
program is linear in the number of SPFEs. We therefore
believe that as the number of requirements to be checked
by LFA testing increases, the amount of effort to imple-
ment LFA testing scales up reasonably.

Traceability. Particularly when using the small-step
process proposed here, the log file analyzer program
(LFAP) and the logging instrumentation can be traced
back directly to the requirements. This traceability can
aid in achieving high assurance, in situations in which it
is required, for instance in safety-critical projects.

5.2. Potential Problems

False negatives and positives. When an analyzer an-
nounces that a log file indicates a fault in the SUT, the
cause might actually be a fault in the analyzer. This “false
negative” is the equivalent of an invalid expected result in
regression testing. A more serious problem is that a faulty
analyzer could give a “false positive” by passing a log file
that does actually indicate an error.

To address this problem, we have advocated the use of
inspections for log file analyzers, and have provided tools
for validating them [3]. Of course, the use of these tech-
niques and tools increases the weight of the development
process (see below).

Instrumentation maintenance. The logging instru-
mentation added to the SUT for LFA testing is extra code
that must be maintained. Changes to the code for other
maintenance reasons must take account of the logging in-
strumentation.

This problem exists already in the large body of soft-
ware that generates log files. However, existing log files
are often used only for debugging, and are not an intimate
part of the test result checking effort; the logging instru-
mentation therefore does not have to be kept in step with
the rest of the code as strictly as with LFA testing.



Process “weight”. The benefits that we get out of LFA
testing increase as we follow one of the processes out-
lined in this paper more closely. However, naturally this
makes the process more heavyweight and brings with it
problems such as developer frustration and process over-
head. The more heavyweight the LFA testing process, the
more safety-critical the project would have to be to justify
it.

6. Conclusions

Whether the benefits of LFA testing outweigh the
problems, and under what conditions, are subjects for fu-
ture research. One of the purposes of this paper is to pro-
pose processes for future study that can enhance the bene-
fits and address the problems. We plan to continue by ap-
plying the new small-step process to publically-available
and industrial requirements, measuring the amount of
time taken, the size of the resulting artifacts, and the ef-
fectiveness of the resulting testing.

7. Acknowledgements

This research has been generously supported by the
Natural Science and Engineering Research Council of
Canada (NSERC) and Nokia Corporation. This paper
was written while the author was visiting Dan Hoffman
and the Computer Science Department at the University
of Victoria, to whom we are grateful for the use of their
facilities.

References

[1] J.-R. Abrial. Steam-boiler control specification problem.
In J.-R. Abrial, E. Börger, and H. Langmaack, editors,
Formal Methods for Industrial Applications: Specifying
and Programming the Steam Boiler Control, volume 1165
of LNCS. Springer, October 1996.

[2] X. An. Steam-boiler control system – simulation and test-
ing using log file analysis. Master’s thesis, Department of
Computer Science, University of Western Ontario, Lon-
don, Ontario, Canada, September 2000.

[3] J. H. Andrews, R. Fu, and V. D. Liu. Adding value to
formal test oracles. In Proceedings of the 17th Annual
International Conference on Automated Software Engi-
neering (ASE 2002), pages 275–278, Edinburgh, Scot-
land, September 2002.

[4] J. H. Andrews and Y. Zhang. Broad-spectrum studies of
log file analysis. In Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000), pages
105–114, Limerick, Ireland, June 2000.

[5] J. H. Andrews and Y. Zhang. General test result check-
ing with log file analysis. IEEE Transactions on Software
Engineering, 29(7):634–648, July 2003.

[6] G. S. Boolos and R. C. Jeffrey. Computability and Logic.
Cambridge University Press, Cambridge, UK, 2 edition,
1980.

[7] M. E. Fagan. Design and code inspections to reduce
errors in program development. IBM Systems Journal,
15(3):182–211, July 1976.

[8] M. Harder, J. Mellen, and M. D. Ernst. Improving test
suites via operational abstraction. In Proceedings of the
25th International Conference on Software Engineering,
pages 60–73, Portland, Oregon, May 2003.

[9] D. Harel. From play-in scenarios to code: An achievable
dream. IEEE Computer, 34(1):53–60, January 2001.

[10] G. Huang and J. H. Andrews. Learning and initial use of
a software testing technology: An exploratory study. In
Proceedings of the 8th International Conference on Em-
pirical Assessment in Software Engineering (EASE 2004),
Edinburgh, Scotland, May 2004. To appear.

[11] J. Jacky. The Way of Z: Practical Programming with For-
mal Methods. Cambridge University Press, 1997.

[12] J. Kirby, Jr., M. Archer, and C. Heitmeyer. SCR: A
practical approach to building a high assurance COMSEC
system. In 15th Annual Computer Security Applications
Conference, pages 109–118, Phoenix, Arizona, December
1999.

[13] V. D. Liu. Conformance analysis of communications pro-
tocol software using log files. Master’s thesis, Depart-
ment of Computer Science, University of Western On-
tario, London, Ontario, Canada, April 2002.

[14] E. Metz and R. Lencevicius. Efficient instrumentation for
performance profiling. In Proceedings of the Workshop
on Dynamic Analysis, ICSE 2003, pages 10–12, Portland,
Oregon, May 2003.

[15] H. D. Mills, M. Dyer, and R. Linger. Cleanroom soft-
ware engineering. IEEE Software, 4(5):19–24, September
1987.

[16] D. L. Parnas and P. C. Clements. A rational design pro-
cess: How and why to fake it. IEEE Transactions on Soft-
ware Engineering, 12:251–257, February 1986.

[17] B. D. Tackett and B. V. Doren. Process control for error-
free software: A software success story. IEEE Software,
16(3):24–29, May/June 1999.

[18] E. J. Weyuker. On testing non-testable programs. The
Computer Journal, 25(4):465–470, November 1982.


