
Run Time Monitoring of Reactive System Models

Mikhail Auguston

Naval Postgraduate School

Monterey, CA, USA

auguston@cs.nps.navy.mil

Mark Trakhtenbrot

 Academic Institute of Technology

Holon, Israel

ilmarktr@yahoo.com

Abstract

In model-based development of reactive systems,

statecharts are widely used for formal design of system

behavior, and provide a sound basis for analysis and

verification tools, as well as for code generation from

system models. We present an approach for dynamic

analysis of reactive systems via run-time verification of

code produced with Statemate C and MicroC code

generators [10], [15]. The core of the approach is

automatic creation of monitoring statecharts from

formulas that specify the system's behavioral properties in

a proposed assertion language. Such monitors are then

translated into code together with the system model, and

executed concurrently with the system code. This

approach leads to a more realistic analysis of reactive

systems, as monitoring is supported in the system's actual

operating environment. For models that include design-

level attributes (division into tasks, etc.), this is crucial for

performance-related checks, and helps to overcome

restrictions inherent in simulation and model checking.

1. Introduction

Development of reliable reactive systems is a

significant challenge, especially due to their complex

behavior. There has been a great deal of research on the

development of formal methods for specification, design,

analysis and verification of reactive systems.

For precise specification of system behavioral

properties, various types of temporal logic are widely

used. These include LTL [14], which offers special

temporal operators for reasoning about past and future

properties of behavioral sequences, and MTL [5], which

supports expression of real-time constraints through

definition of duration for future temporal operators. Some

specification formalisms suggest various kinds of syntax

sugar that make the specification task more user friendly

for designers who are not logicians. For example, with the

LA language in [18], temporal properties look as a

combination of stylized English with C-like expressions.

In [3], the temporal logic details are hidden "behind the

scenes", and instead, patterns are used that allow to specify

common properties (such as existence, absence, response,

precedence, etc.) and scope in which the property should

hold. This approach is used, for example, in a Statemate

verification tool called ModelCertifier [16] that offers a

rich library of pre-defined property patterns, where each

pattern looks as a parameterized natural language

sentence. Paper [6] introduces a language for pattern

definition as a way to create extendable sets of property

patterns. Sugar [19] provides several layers for property

specification and verification; in particular, extended

regular expressions are used to describe execution

sequences on which temporal properties are checked.

On the other hand, model-based system development

has become the way to design, implement and validate

reactive systems. Statecharts, first introduced in [9], have

become a standard for behavior design in popular model-

based methodologies such as structured and object-

oriented design [7]. Various tools (e.g., Statemate [10],

Rhapsody [9], BetterState [20]) support the creation of

executable models using statecharts, and their analysis

through simulation, execution of automatically generated

code, and, in Statemate, verification. Ongoing research on

model-based testing covers, among other issues, test

generation from statechart models [4].

One powerful method of dynamic analysis is run-time

monitoring of system execution. A number of tools have

been developed for monitoring various types of programs

(including real-time systems); see, for example [1], [2],

 [18]. The relevant assertion languages allow for

expressing a wide range of properties in terms of events

that occur in the running code, and for defining tool

reactions when a violation is found or when the run was

successful. An important problem here is the gap between

the system specification, which usually refers to high-level

objects, and monitors, which refer to implementation-level

events (such as function calls, etc.). Some issues related to

derivation of monitors from system specification are

considered in [17].

Model-based development leads to a narrowing of this

gap, as monitoring can be performed on the model (rather

than the implementation) level. Statemate [10] supports

the use of the so-called watchdog (testbench) statechart.

Such a chart is not part of the system model; its role is

either that of a driver (acting as an environment and

producing system inputs) or a monitor (watching the

system for proper behavior or abnormalities). To perform

its role, the watchdog is executed in parallel with the

model. Violation of the monitored property can be

expressed and observed as entering an error state in the

monitor chart. For example, Fig. 1 shows a simple

statechart for monitoring the following requirement:

"Processing of a request must be accomplished within 5

seconds, and before receiving the next request".

An important feature of monitor statecharts is that they

have access to all elements in the system model. In other

words, visibility from the monitor is supported both for

observable elements (events, conditions and data items)

that belong to system's interface with the environment, and

for internal elements such as states or events used for

internal communication between system components. This

allows for both black box and more detailed white box

monitoring, and makes localization of design problems

easier.

2. What is in this paper

This paper presents an approach to dynamic analysis of

reactive systems modeled with statecharts using Statemate.

The basic goal here is to reveal errors (rather than to

validate or show correctness).

The analysis is based on run-time monitoring of code

generated from the system model. The code is checked

against the system specification describing the required

and forbidden behaviors; these are expressed in a proposed

assertion language described below. The main idea

underlying this approach is the automatic creation of

monitors directly from the system specification. This is

achieved through translation of the specification into an

equivalent watchdog statechart(s). This step is followed by

generating code from the system model and from the

created monitor (using the existing Statemate C code

generator), and their simultaneous execution. Appropriate

diagnostics is produced during the execution and/or upon

its completion.

The suggested approach has a number of advantages,

and is especially helpful in situations where the use of

other analysis tools (e.g. of model checkers such as

Statemate ModelCertifier [16]) becomes problematic:

- There is no restriction on the size of the tested model,

and execution of compiled code (for model and monitor) is

fast. On the other hand, model checking may become slow

for very large real-world models.

- Generated code for the system and its monitor is

executed in real time. Even though such code is usually

considered prototype quality, it is fast enough and allows

for meaningful checks of time constraints (unless they are

tighter than the code performance). Such checks are

beyond the scope of simulation and model checking tools

that are based on simulated time schemes described in

 [12]: synchronous (for clock-driven systems) and

asynchronous (for event-driven systems). In the

synchronous scheme duration of all steps is the same,

regardless of how "heavy" the executed actions are. In the

asynchronous scheme, steps take zero time, and the system

executes a chain of steps until stabilization; only then is

the clock advanced and inputs accepted. These

abstractions are based on the assumption that the system is

fast enough to complete its reactions to external stimuli

before the next stimulus arrives. Real time monitoring

allows one to check whether this assumption is correct.

- Our approach allows monitoring of code generated

from the Statemate model augmented by design attributes

(showing the system division into tasks of various types,

mapping model elements into events of the target RTOS,

etc.). For such models, the MicroC code generator [15]

automatically creates a highly optimized production

quality code for the OSEK operating system, widely used

in the automotive industry for embedded microcontroller

development. Thus the code can be executed and

monitored in its realistic hardware-in-the-loop operating

environment. This kind of analysis is impossible with

model checking.

- Model checking requires that all data be properly

restricted, to guarantee that a finite state model is

analyzed. This requirement is problematic for input data, if

there is not enough information about the system

environment. No such restrictions are relevant for

monitoring, and moreover, monitored code derived from

the system model can be connected to real sources of input

data.

3. Assertion language

To specify and monitor real-time properties of reactive

systems, we use an assertion language that integrates a

number of powerful features found in temporal logic and

in FORMAN language (the latter was introduced in [1],

[2], and is used in a number of tools):

- Boolean expressions can refer to any elements in the

system model, and express properties of system

configurations. For example: in(S) and (x>5) means that

currently the system is in state S and x is greater than 5.

- Regular expressions allow for description of state

sequences. Consider for example, the expression:

[SELECT (Open | Read | Write | Close) FROM ex_program]

SATISFY Open (Read | Write)* Close

This assertion requires to select execution trace states

matching one of the given patterns, and to check the

sequence of selected states for conformance with the

regular expression.

- Temporal formulas express order properties fulfilled

by system execution sequences. They are built using

unrestricted future temporal operators NEXT, ALWAYS,

EVENTUALLY, UNTIL and their past counterparts:
PREVIOUS, ALWAYS_WAS, SOMETIME_WAS, SINCE.

Following [14], we consider formulas for the following types of

properties (where P is a past formula):
 Safety: ALWAYS (P)

 Guarantee: EVENTUALLY (P)

 Obligation: Boolean combination of safety and guarantee

 Response: ALWAYS (EVENTUALLY(P))

 Persistence: EVENTUALLY (ALWAYS(P))

 Reactivity: Boolean combination of response and persistence.

According to [14], any temporal formula is equivalent to a

reactivity formula; the other five types of formulas are

allowed for more flexibility. For convenient expression of

real-time constraints, we support also a restricted version of

the above operators; it is obtained by attaching appropriate

time characteristics. For example, ALWAYS(10)P means

that P is continuously true during 10 time units after the

current moment, while SOMETIME_WAS (10) P denotes that

P was true at least once in the 10 previous time moments.

With this extension, P in the above formulas is now

allowed to be a restricted (future or past) formula. Note

that we don't allow an unrestricted temporal operator to be

nested within a restricted one.

- Actions define what should be done when a property

violation is found, or when the property holds for the

checked run. Typically, this includes sending an

appropriate message. In general, any user-defined

functions can be used here to provide a meaningful report

that may include, for example, interesting statistics and

other profiling information (frequency of occurrence for

certain event, total time spent by the system in certain

state, etc.). For this, actions can use the appropriate

attributes of the referred objects (e.g., the time at which a

certain interval was entered).

The examples in section 4 illustrate the use of this

assertion language. Since the language is based on

constructs described elsewhere (see [14], [12] and [1]),

detailed description of its syntax and semantics is omitted

from this paper. Nevertheless, one delicate issue should be

mentioned here. System specification usually assumes

infinite execution sequences (as a reactive system has an

ongoing interaction with its environment).

Correspondingly, the traditional semantics of temporal

operators is also defined for infinite execution sequences.

However, monitoring usually deals with finite (truncated)

runs, and this requires a proper definition of the semantics

for cases when there is doubt as to what would have been

the property formula value if the execution had not been

stopped. Paper [7] studies several ways of reasoning with

temporal logic on truncated executions. We follow the so

called neutral view discussed in [7]; this is illustrated by

the following example. Consider the assertions:

 ALWAYS (P EVENTUALLY (10) Q)

 ALWAYS (P ALWAYS (10) Q)

and suppose that the run is completed (truncated) 4

seconds after the last occurrence of event P (we assume

that each of the properties held for all earlier occurrences

of P). If there was no Q after the last P, then the first

assertion is considered to be false for this run (even though

continuation of the run could reveal that Q does occur in

10 seconds after P, as required). On the contrary, if Q held

continuously after the last P and until the end of the run,

then the second assertion is considered to be true. In

general, it is the user's responsibility to make the on-satisfy

and on-failure actions detailed enough, so that he can

better understand the monitoring results (e.g. whether a

real violation was found, or it is in doubt due to the state at

which the execution was truncated).

4. Examples

To illustrate our approach, we consider the Early

Warning System (EWS) example from [12]. We present

its verbal description followed by the statechart presenting

the behavioral design of the system. We then give

examples of assertions and, for one of them, show its

translation into a monitor statechart according to our

translation scheme.

The EWS receives a signal from an external source.

When the sensor is connected, the EWS performs signal

sampling every 5 seconds; it processes the sampled signal

and checks whether the resulting value is within a

specified range. If the value is out of range, the system

issues a warning message on the operator display. If the

operator does not respond to this warning within a given

time interval (15 seconds), the system prints a fault

message and stops monitoring the signal. The range limits

are set by the operator. The system is ready to start

monitoring the signal only after the range limits are set.

The limits can be redefined after an out-of-range situation

has been detected, or after the operator has deliberately

stopped the monitoring.

Fig. 2 shows a statechart describing the EWS, similar

to the one in [12]. The main part of EWS behavior is

detailed in state ON. It contains two AND-components that

represent the EWS controller and the sensor acting

concurrently. Events DO_SET_UP, EXECUTE, and RESET

represent the commands that can be issued by the operator.

Timing requirements are represented by delays that trigger

the corresponding transitions. The AND-components can

communicate; for example, see event CONNECT_OFF sent

from the controller component to the sensor component.

Following are four examples of assertions that reflect

some of the above requirements for EWS:
1) ALWAYS (EXECUTE SOMETIME_WAS (DO_SET_UP))

(monitoring of signal should be preceded by setting range

limits)

2) ALWAYS (OUT_OF_RANGE

 EVENTUALLY (15) (RESET or started(PRINT_ALARM))

(in the out-of-range situation, within 15 seconds either the

operator responds or a fault message is printed)

3) ALWAYS (

 ALWAYS_WAS (15) (in(DISPLAY_ALARM) & not RESET)

 started(PRINT_ALARM))

(a similar property, this time expressed using the past

temporal operator)

4) ALWAYS (FINISHED_SAMPLING

 ALWAYS (5) in(IDLE) or EVENTUALLY(5)CONNECT_OFF)

(after signal sampling is finished, there is a 5-second pause

before the next sampling, unless the sensor is

disconnected)

Note that the first assertion is violated for the given

statechart; this happens in the following scenario:

POWER_ON; CONNECT_ON; EXECUTE. The other

assertions are valid as long as the system remains in its ON

state (i.e., POWER_OFF doesn't occur), but otherwise can

be violated.

Fig. 3 shows how the second of these four assertions is

translated into a monitor statechart. Suppose POWER_OFF

occurs 7 seconds after OUT_OF_RANGE, and there was no

RESET in this interval. If the system remains in state OFF

for at least the following 8 seconds, then the monitor will

enter its state D, thus indicating a violation of the

monitored assertion.

5. Implementation Outline

Statemate Boolean expressions obtained from basic

predicates (like in(DISPLAY_ALARM)), guarding conditions,

and event occurrences are directly visible from monitor

statechart; in this sense, their monitoring is trivial. In

monitors created to watch temporal and timing properties,

such expressions can be used as transition triggers, similar

to the example in Fig.1.

In the rest of this section, we present an outline of a

translation scheme for restricted and unrestricted temporal

formulas allowed by our assertion language (see section 3

above). Though not fully formalized here, the presentation

clearly shows the technique used for generation of

monitors from assertions.

Let P, Q, S denote basic Boolean formulas, which do

not contain any temporal operators, and let FRM denote

any formula.

Then P Q means that P is used as a trigger to start

monitoring of formula Q; for each occurrence of P, a new

thread of Q monitoring should be started. Absence of the

trigger (P …) means that the start of execution is the

only trigger event.

If a formula includes only restricted future temporal

operators, like in
FRM P TL_Operator (N1) TL_Operator (N2) ….

TL_Operator (Nk) S

then its value becomes known after (i.e. it needs to be

monitored during), at most, t(FRM) = N1 + N2 + … + Nk

time units from the triggering event P. For example:

 P ALWAYS(5) EVENTUALLY(10) S

is monitored during, at most, 15 time units from the

triggering event P. For each step within the monitoring

interval we have to know the Boolean values of all basic

sub-formulas in the FRM. This is sufficient to determine,

after t(FRM) time units, whether FRM is true or false for the

particular occurrence of the trigger event P.

Every restricted future formula is translated into a chart

containing two designated states: accepting state F, and

rejecting state D; there are no transitions exiting from F

and D in such a chart. The value of the formula is true

when computation ends in F, and false when it ends in D.

If execution of the monitored system is truncated before

completion of the formula computation, then (in the spirit

of the neutral view as defined in [7]) the value is decided

to be true for the ALWAYS-formula and false for the

EVENTUALLY-formula.

As an illustration, Fig. 4 schematically shows the

translation pattern for FRM ALWAYS (N) P, where P itself

is either a basic or a restricted future formula. Translation

is defined by structured induction, starting from the case

when P is a basic formula. Note that each advance of the

clock by one time unit causes a new thread of computation

for P to be started. Each thread is represented in the chart

by a separate AND-component; there are N such

components. This number is known based on an analysis

of the translated formula.

Fig. 5 shows a translation pattern for a safety assertion

where the unrestricted operator ALWAYS is applied to the

restricted formula P (the actual structure of state P in each

thread is defined by translation rules for restricted

formulas). In this case, as long as P holds the value true,

we should continue the ongoing computation of P.

Whenever the monitor enters its D state, the value of the

formula becomes false; otherwise (including the case of

truncated execution), the value is true. Note that since

obtaining a value of P may require up to t(P) time units,

there are t(P) threads computing P. When a cycle of P

computation is completed with the value true (the

component reaches its F state), it is restarted again. Also

note the delays: RESTART_P_i is defined in such a way that

with each advance of the clock by one time unit, a new

cycle of P computation is started. Restarting P

immediately upon its completion in state F would have

caused a violation of such synchronization in case a

certain cycle takes less time than t(P). This, in turn, could

lead to wrong computation of the entire formula.

To implement EVENTUALLY (ALWAYS(P)), we have to

restart computation of ALWAYS(P) whenever it gets the

value false, i.e., when the chart in Fig. 5 enters state D (at

the top level of the hierarchy). In other words, such

implementation can be obtained by redirecting the

transition from D back to the AND-state.

Implementation of dual formulas (where ALWAYS is

replaced by EVENTUALLY and vice versa) is similar to the

described above, with appropriate replacement of F-states

by D-states and vice versa.

For restricted past formulas we need to monitor only

the finite segment of the execution in order to decide

whether the formula is true or false. Consider, for

example, ALWAYS_WAS (N) P which means "during N time

units preceding the current moment, P was continuously

true". Implementation uses a counter CP associated with

the formula; on each advance of the clock, if P is true then

CP is incremented, and if P is false then CP is set to 0.

Now ALWAYS_WAS (N) P is true at the current moment, iff

CP=N.

Similarly, for SOMETIME_WAS (N) P that means "from

the current moment in at least N previous steps P was true

at least once", the implementation will use the counter CP

in the following way: On each advance of the clock, if P is

true then CP is set to N, and if P is false then CP is

decremented by 1. Now, SOMETIME_WAS (N) P is true at

the current moment, iff CP > 0 at the current moment.

6. Conclusions and future work

The paper presents an approach to dynamic analysis of

reactive systems via run-time verification of code

generated from Statemate models. The approach is based

on the automatic creation of monitoring statecharts from

formulas that specify the system's temporal and real-time

properties in a proposed assertion language. The

promising advantage of this approach is in its ability to

analyze realistic models (with attributes reflecting the

various design decisions) in the system's realistic

environment. This capability is beyond the scope of

simulation and model checking tools.

Several experiments have been carried out, that

included manual creation of monitor charts from assertion

formulas and their use with C code generated from

Statemate models (EWS considered in section 4, and some

others). This helped in a more accurate definition of the

translation scheme.

The natural next step is actual implementation of the

translation from the assertion language into statechart

monitors, which is the core of the suggested approach, and

use of created monitors with real-world system models.

The assertion language needs to be more convenient

for designers. A possible way to achieve this is to adopt

some of the ideas discussed in [3], [6], [18], [19]. This will

require an appropriate adaptation of the translation

scheme.

The system described above for statechart run time

monitoring is under development. The suggested

translation scheme provides a uniform mechanism for

automatic creation of monitors, although some examples

show that, in certain cases, more compact and optimized

monitors can be produced. Further research is needed to

define a more efficient translation scheme, both for

synchronous and asynchronous time models.

Finally, an interesting challenge is to check a similar

approach with a UML-based design paradigm that uses an

OO version of statecharts for behavior description. Here

an additional advantage could be in monitoring of systems

where objects are created dynamically such that their

amount is not limited in advance (model checking analysis

of such systems is clearly problematic).

7. Acknowledgements

This work has been supported in part by the U.S.

Office of Naval Research Grant # N00014-01-1-0746.

8. References

[1] M. Auguston, Program Behavior Model Based on Event

Grammar and its Application for Debugging Automation,

2nd Int’l Workshop on Automated and Algorithmic

Debugging, AADEBUG'95, May 1995, pp. 277-291.

[2] M. Auguston, A. Gates, M. Lujan, Defining a Program

Behavior Model for Dynamic Analyzers, 9th International

Conference on Software Engineering and Knowledge

Engineering, SEKE'97, June 1997, pp. 257-262.

[3] G.S. Avrunin, J. C. Corbett, and M. B. Dwyer, Property

Specification Patterns for Finite-State Verification, 2nd

Workshop on Formal Methods in Software Practice, March

1998, pp.7-15.

[4] K.Bogdanov, M.Holcombe, H.Singh. Automated Test Set

Generation for Statecharts. In D. Hutter, W. Stephan, P.

Traverso and M. Ullmann, editors, Applied Formal Methods

- FM-Trends 98, LNCS, v.1641, Springer Verlag, 1999, pp.

107-121.

[5] E.S. Chang, Z. Manna, and A. Pnueli. Compositional

Verification of Real-time Systems. In Proceedings of the 9th

IEEE Symposium Logic in Computer Science (LICS 1994),

IEEE Computer Society Press, 1994, pp. 458-465.

[6] J.C. Corbett, M.B. Dwyer, J. Hatcliff, Robby. A Language

Framework for Expressing Checkable Properties of

Dynamic Software. In Proceedings of the 7th International

SPIN Workshop on SPIN Model Checking and Software

Verification, LNCS, v.1885, Springer-Verlag, 2000, p.205-

223.

[7] B. P. Douglass, D. Harel and M. Trakhtenbrot. Statecharts

in Use: Structured Analysis and Object-Orientation.

Lectures on Embedded Systems (F. Vaandrager and G.

Rozenberg, eds.), LNCS, v.1494, Springer-Verlag, 1998, pp.

368-394.

[8] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, D.

Van Campenhout. Reasoning with Temporal Logic on

Truncated Paths, In Proceedings of 15th Computer-Aided

Verification conference (CAV'O3), LNCS, v.2725, Springer-

Verlag , July 2003, pp.27-39,

[9] E. Gery, D. Harel and E. Palatchi. Rhapsody: A Complete

Lifecycle Model-Based Development System, In Proc. 3rd

 Int. Conference on Integrated Formal Methods, IFM 2002,

 pp.1-10.

[10] D.Harel. Statecharts: A Visual Formalism for Complex

Systems, Science of Computer Programming, 8, 1987, pp.

231-274.

[11] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R.

Sherman, A. Shtul-Trauring and M. Trakhtenbrot.

STATEMATE: A Working Environment for the

Development of Complex Reactive Systems, IEEE Trans.

on Software Engineering 16:4 (1990), pp.403-414.

[12] D. Harel and A. Naamad. The STATEMATE Semantics of

Statecharts. ACM Trans. on Software Engineering Method.

5:4 (1996), pp.293-333.

[13] D.Harel, and M.Politi, Modeling Reactive Systems with

Statecharts: The STATEMATE Approach McGraw-Hill,

1998

[14] Z.Manna and A.Pnueli. The Temporal Logic of Reactive and

Concurrent Systems. Springer-Verlag, 1991.

[15] M.Thanne and R.Yerushalmi. Experience with an Advanced

Design Flow with OSEK Compliant Code Generation for

Automotive ECU's. Dedicated Systems Magazine, Special

Issue on Development Methodologies & Tools, pp. 6-11,

2001

[16] OSC – Embedded Systems AG. Statemate ModelCertifier.

 http://www.osc-es.de/products/en/modelcertifier.php

[17] D.Richardson, S.Leif Aha, T.Owen O'Malley. Specification-

based Test Oracles for Reactive Systems, In Proc.

Fourteens Intl. Conf. on Software Engineering, Melbourne,

1992, pp.105-118.

[18] O.Strichman, R.Goldring. The 'Logic Assurance (LA)'

System - A Tool for Testing and Controlling Real-Time

Systems, In Proceedings of the 8th Israeli Conference on

Computer Systems and Software Engineering, 1997, pp.47-

56.

[19] I.Beer, S.Ben-David, C.Eisner, D.Fisman, A. Gringauze and

Y.Rodeh. The Temporal Logic Sugar. In Intl. Conference on

Computer Aided Verification (CAV'01), LNCS, v.2102, July

2001, pp.363-367.

[20] Wind River Systems, Inc. BetterState

 http://www.windriver.com/products/betterstate/index.html

Figure 2. Statechart for Early Warning System

Figure 3. Monitor chart for the assertion

ALWAYS (OUT_OF_RANGE EVENTUALLY (15) (RESET or started(PRINT_ALARM)))

OFF

ON

IDLE

SETTING_UP

WORKING

COMPARING

DISPLAYING_
ALARM

OUT_OF_RANGE
dly(15)/
 st!(PRINT_ALARM)

RESET

/CONNECT_OFF

[in(CONNECTED)]

[in(DISCONNECTED)]

EXECUTE

DONE_
SET_UP

DO_
SET_UP

S

C

DISCONNECTED

CONNECTED

WAIT SAMPLING

dly(5)

SAMPLING_DONE
CONNECT_OFF

CONNECT_ON

IDLE

SETTING_UP

WORKING

COMPARING

DISPLAYING_
ALARM

DISCONNECTED

CONNECTED

WAIT SAMPLING

OUT_OF_RANGE
dly(15)/
 st!(PRINT_ALARM)

RESET

/CONNECT_OFF

[in(CONNECTED)]

[in(DISCONNECTED)]

EXECUTE

DONE_
SET_UP

DO_
SET_UP

dly(5)

SAMPLING_DONE
CONNECT_OFF

CONNECT_ON

POWER_OFF

POWER_ON

S

C

Figure 5. Translation pattern for formula ALWAYS P

F D

P

F D

START_P

P

F D

START_P

IDLE

dly(1)

P

F D

START_P

IDLE

dly(2)

P

F D

START_P

IDLE

dly(N)

.....

P

F D

START_P

P

F D

START_P

IDLE

P

F D

START_P

IDLE

P

F D

START_P

IDLE

F D

IDLE dly(1) dly(2) dly(N)

/RES:=false

dly(N)/
 RES:=true not P

/RES:=false

.....

Maximum time needed to compute value
of formula FRM:

 t(FRM) = N

Computation may finish in less than N time units

Case 1:

P a is basic formula

Maximum time needed to compute value of formula FRM:
t(FRM) = N + t(P)

Case 2:

P contains only restricted temporal operators

All components
are in F / RES:=true

At least one component
is in D / RES:=false

Figure 4. Translation patterns for formula ALWAYS (N) PP

D

COMP_N

P

F D

START_P

IDLE

RESTART_P_N/
RES:=true

dly(N)/
TN:=CURR_TIME

COMP_0

P

F D

START_P

RESTART_P_0/
 RES:=true

/T0:=
 CURR_TIME

COMP_2

P

F D

START_P

IDLE

RESTART_P_2/
RES:=true

dly(2)/
T2:=CURR_TIME

COMP_1

P

F D

START_P

IDLE

RESTART_P_1/
 RES:=true

dly(1)/
T1:=CURR_TIME

...

...

COMP_N

P

F D

START_P

IDLE

COMP_0

P

F D

START_P

COMP_2

P

F D

START_P

IDLE

COMP_1

P

F D

START_P

IDLE

RESTART_P_N/
RES:=true

dly(N)/
TN:=CURR_TIME

RESTART_P_0/
 RES:=true

/T0:=
 CURR_TIME

RESTART_P_2/
RES:=true

dly(2)/
T2:=CURR_TIME

RESTART_P_1/
 RES:=true

dly(1)/
T1:=CURR_TIME

/RES:=false

...

...

P is a resticted formula: t(P) = N
===================================

RESTART_P_i = dly(N - mod(CURR_TIME-Ti, N)) At least one
component is in D /
 RES:=false

