Ideas for Efficient Hardware-Assisted Data Breakpoints

Jonathan E. Cook Mayur Palankar
Department of Computer Science
New Mexico State University
Las Cruces, NM 88003 USA
jcook@cs.nmsu.edu

Abstract

Data breakpoints, sometimes called watchpoints,
have long been desirable for debugging and other dy-
namic analyses, but are often prohibitively slow to use.
Current processors have a small number of breakpoint
registers that can be used to trap data read and write
operations at CPU speeds—for example, the Intel 386+
CPUs have four breakpoint registers that can watch one
word of memory each. Current use of these registers is
naive and limited, and so we propose and describe some
investigation into furthering their use.

1. Introduction

While debuggers have long supported efficient
code breakpoints, data breakpoints, sometimes called
watchpoints, have lagged behind in the efficiency. This
is because debuggers have typically resorted to single-
stepping through the program and checking to see if the
current instruction is going to touch the watched data
location. Code breakpoints are easy because there is
only one place in the code to worry about, and a trap
can easily be set at that point. A data location can
be used or assigned in many code locations, and in a
program with pointers it is possibly undecidable as to
which code locations will affect a specific data loca-
tion. One reference cites a slowdown of 85,000 times
for a program running under a debugger with a data
watchpoint set [3].

Current processors have attempted to alleviate this
situation somewhat by including in their design a small
number of breakpoint registers that can be used to trap
data read and write operations at CPU speeds—for ex-
ample, the Intel 386+ CPUs have four breakpoint reg-
isters that can watch one word of memory each. Other

CPUs have just one data breakpoint register.
These registers are a step forward but are obvi-

ously a severely limited resource. For example, the gdb
debugger will use the breakpoint registers for simple
variable access breakpoints, but will resort to software
trapping if more data is being watched than there are
registers, or if expressions are used. For example, the
program

int main()

{
int x,y,z;
y =5; z=3;
for (x=0; x<10000000; x++)
{
if (x == 678456)
y =2
z =x - 5;
¥
z = (x-2) +y;
return z;
}

when run directly gives an execution time of 0.04 sec-
onds. Running it under gdb with no watchpoints gives
an instantaneous prompt return (meaning essentially
no slowdown), and running it with a “watch y” also
gives an instantaneous program interruption at the
“y=2" line. Unfortunately, running the program while
watching for the expression “y==5" to change takes
6 minutes, 15 seconds in the debugger process and 41
seconds in the program process. This gives a total slow-
down of about 10,400.

Thus, while the data breakpoint registers are being
used currently, their use is basic and naive. We pro-
pose several interesting research questions surrounding
the use of these registers. Can these limited breakpoint
registers be used efficiently to watch a large number of
data locations? If so, what types of extra support are
needed to be able to schedule the registers? Can static
analysis of the program help determine the scheduling
of which locations needs to be watched at each point
in the program runtime? If 100% coverage is too ex-
pensive to obtain, can statistical methods be used to
achieve high but not perfect coverage?



Program
Source

Static

Analysis
DBP
Watched Register
Variables Schedule

Dynamic
Analysis

Dynamic
Analysis
Output

Figure 1. General framework for breakpoint
register usage.

In this paper we explore some not-yet-tested
thoughts on how these data breakpoint (DBP) regis-
ters might be used for efficient dynamic analyses that
need to watch variables. Figure 1 shows our general
framework for efficiently using the DBP registers in
dynamic analyses. We propose that a static analysis
phase is needed to build an efficient (or even feasible)
schedule when trying to use limited DBP registers to
watch a large number of variables.

2. Assumed instrumentation capabilities

Our goal is to improve the efficiency of dynamic
analyses that need to watch variables. Thus, while
in the extreme we might need full instruction-level in-
strumentation capabilities, our goal is to use as little
instrumentation as possible. The two questions regard-
ing watching more variables than are DBP registers are
1) Does a schedule for the DBP registers exist that cov-
ers all accesses to the variables, and 2) What triggers
are needed in the program execution to allow us to
change the current watched variables according to the
schedule? In this section we ignore question 1 for now.

At the initial level, we of course have the DBP regis-
ters themselves. We assume that on each trigger of our
instrumentation, we can know the current statement
in the program. Also note that DBP triggers are not
necessarily lightweight. Our current mechanism (and
the only known capability) places triggers in a parent
process (similar to a debugger); thus a trigger causes a
heavyweight context switch to another process.!

!nitial measurements over a simple program where a trigger
occurred every 10th iteration through a counting loop resulted
in a slowdown of about 50—the original unwatched process took

If the data breakpoints themselves are not sufficient,
then what other instrumentation do we need? A first
step would be function entry and exit, with a more
generalized notion being basic block entry and exit.
Having access to the scope entry and exit of variables
that are being watched is of obvious benefit. It may
also be the case that schedule changes might need to
be done within a scope but still at the beginning or end
of some intermediate basic block.

The final, most detailed level, would be the ability
to instrument arbitrary points in the program, between
individual statements and even at the expression level.
This would allow schedule changes at any point in the
program. At this level our task seems essentially equiv-
alent to register allocation. It is important to remem-
ber, however, that modifying the DBP registers is likely
to be a heavyweight operation (e.g., involving a context
switch), and thus its frequency needs to be minimized.
Again, experimental evidence will be needed to decide
how often this level of instrumentation will be needed.

It is important to remember that the DBP registers
watch for accesses to a memory location. They do not
attempt to correspond data register accesses to mem-
ory location accesses. Thus, as long as variable values
are in a register and being used in a register, the vari-
able accesses are invisible to the DBP mechanism. The
full implications of this are not yet absorbed by the au-
thors, but it certainly implies that DBP registers do not
necessarily provide full trapping of all variable accesses,
especially in optimized programs and on architectures
with a large number of registers.

3. Watching multiple variables

The first scenario that we consider is the simple case
of watching more variables than there are breakpoint
registers. In this section we are assuming that the pro-
gram does not use pointers.

In considering how to watch the variables, the first
thing we need to look at is the lifetimes of the variables.
If the number of overlapping variable lifetimes is less
than or equal to the number of breakpoint registers,
then watching them is fairly straightforward. It still
requires, however, a schedule for which variables are
watched when, and the selection of triggers on which to
change the schedule. Because DBP registers watch ad-
dresses, it would be incorrect to watch a local variable’s
address while out of scope for that variable. Thus, even
without overlapping lifetimes outnumbering our DBP

12.41 seconds, while the watched process (and the monitor) took
116.1 user seconds and 502.51 system seconds. While much bet-
ter than the 10,400 slowdown of the debugger, this is quite high
for hardware-assisted breakpoints, and the numbers show that
most of the overhead is in the kernel.



registers, scheduling triggers may still need to resort to
instrumentation at the scope entry /exit level. It should
never need any finer level of instrumentation for this
case.

Next is the case where the number of overlapping
lifetimes is greater than the number of DBP registers.
Here there can be no guaranteed minimal instrumen-
tation level. Yet there still can be hope for the higher
levels. If static analysis can determine a set of vari-
able watches that must trigger and that can indicate
a point to change one or more DBP registers to watch
other variables, then even this case might be handled
by the highest level of instrumentation.

We think that the best way to evaluate this is to
analyze some benchmark programs over a variety of
watch sets and determine what is needed.

4. Introducing pointers

Pointers, as always, are the bane of analyzers. More-
over, pointers are probably the exact cause of many of
the problems we might want to find by watching vari-
ables. A programmer wants to know exactly when and
where a variable is first getting clobbered.

Many studies have been done on points-to analyses,
and it is often the case that pointers have very small
points-to sets (e.g., [2]). This is encouraging in that
it provides hope that the potential program sites for
reading and writing watched variables does not greatly
increase with pointers in the code. However, with even
one pointer having a large or all-variables points-to set
(including our watched variables, one of which it may
be clobbering!) and a watch set greater than the num-
ber of DBP registers, we are immediately in trouble in
how to set our DBP registers.

A potential solution is, in these cases, to watch the
pointer rather than the variables in our watch set. This
allows us, with one DBP register while in the scope of
that pointer, to be able to determine if the accesses of
the pointer will read or write any of the variables. We
can then “virtually” trigger the instrumentation on the
variables themselves. This idea can be applied not just
at the scoping level of troublesome pointers, but at the
statement level. Thus, essentially, they become addi-
tional variables to watch, with an even higher priority
than our regular variables.

A downside to this approach is that the slowdown of
the program might greatly increase due to the interrup-
tions caused by pointer accesses. For non-safe point-
ers we would potentially need to trap every read of the
pointer because it could cause a write to one of our vari-
ables. We should be able to eliminate through static
analysis the program locations where the pointers are

only being accessed to read the data, but this may be
infrequent or not beneficial in average programs. We
could also skip pointer reads when we know the current
value of the pointer is not one of our watched variables,
and only trap on the next pointer write (assuming no
pointer arithmetic).

5. Static analyses

Since we are considering the problem of watching
data accesses, it seems natural that dataflow analyses
are the types of analyses that would most directly in-
form our dynamic analysis stage.

With def-use information and points-to sets from a
pointer analysis, we would know where in the CFG does
each watched variable need to be watched. If variables
are being watched only for writes, then blocks with
variable definitions matter. If we are watching reads
and writes, then both defs and uses matter.

We assume that we can have a statement or
expression-level CFG if needed, rather than simply a
basic-block CFG. This would allow us to ensure that
there is no CFG node does not indicate more watched
variables than are physically possible.

With the above information, the essential problem
is that of creating an efficient schedule. By efficient we
mean one that is cost-minimally updated. This may
not be the same as one with the minimal number of
updates. For example, since DBP triggers already in-
terrupt the process when they occur, it would prob-
ably be cheaper to update the schedule from within
DBP triggers even if we need extra or more updates
than with a scheme that needed to add special traps
(causing new context switches) to achieve an absolute
minimum number of updates.

Attacking this problem might introduce some new
analyses that have heretofore not been considered. For
example, if we are using write-only DBP triggers, then
if a watched variable write is dominated by a set of
writes on currently watched variables, then that set can
potentially serve as schedule update points to bring in
the new variable needing watched. In other words, we
need to find the def(X)-def(Y) chains, where a defini-
tion of watched variable X is live at the definition of
watched variable Y. Finding dominance relations over
these chains would give us points for potential schedule
changes in the DBP triggers themselves.

Similar inter-variable dataflow analysis would be
needed for variables being watched for read and write
accesses. While it sounds daunting at first, this type of
analysis would only need performed over watched vari-
ables (and some pointers), not all variables, and may
be an effective (or necessary) way of finding schedule



updates based on the DBP triggers themselves.

6. Statistical tracing

For some programs and set of desired variables to
watch, it might be the case that 100% coverage of all
variable accesses is simply too prohibitive in cost to
achieve. This might be because the program has many
ill-defined pointers that need to be watched constantly
and thus cause many program interrupts, or because
the number of watched variables and their interaction
is such that DBP register schedule changes need to be
made so often that it results in too much instrumenta-
tion overhead.

Thus, we may wish to attempt to catch most vari-
able accesses, but with much less instrumentation.
Rather than consider the whole space a continuum over
which to make this tradeoff, for now we simplify the
problem to the following question. With DBP triggers
and function entry/exit triggers, can we schedule the
DBP registers to catch a high percentage of watched
variable accesses?

We feel that an empirical investigation into this will
be the only way to really answer the question, given
the range of possible programs and specifications of
watched variables that can be involved. While there
will likely be no guaranteable achieved coverage, per-
haps a static analysis phase could optimize the schedule
and warn about likely code areas where large numbers
of variable accesses may be missed.

A somewhat tangential but related idea is that of
saving the previous value of each watched variable at
each DBP trigger. This would only require a doubling
(plus some overhead) of the watched variable space,
and would provide a safeguard mechanism for poten-
tially noting missed writes on watched variables. If the
current value at a DBP trigger is the same as the previ-
ous, we cannot say for certain that there was no write
in between (it might have written the same value), but
if it is different we have definitely detected an interven-
ing write that was missed by our DBP triggers.

7. Related work

Wahbe et al. [3] present the closest related work,
in which they attack the problem of data breakpoints.
Their motivation is the same, and they give an exam-
ple of a slowdown of 85,000 when data breakpoints are
used in a debugger. Interestingly enough, they mention
the existence of data breakpoint registers, but do not
use them in their work. They dismiss them because of
their limited numbers (the Intel 1386+, at four, seem to
have the most). Rather, they take a code-patching ap-

proach, and they do employ some static analysis steps
to reduce the amount of instrumentation.

Ball and Larus discuss the optimization of program
tracing in [1], but their work is focused on control-flow
tracing, and optimal placement of instrumentation to
capture enough information to reconstruct the original
control flow.

8. Conclusion

Data breakpoint registers, although few, offer hard-
ware support for dynamic analyses that need to observe
data accesses. In trying to create efficient instrumen-
tation for dynamic analyses, we should use, as best we
can, every resource that is available. To this end, we
presented ideas for how the data breakpoint registers
might be used and managed to watch a large number
of variables.

Our ideas center around performing some static
analysis in order to determine a schedule of DBP al-
location that will cover the variable accesses we are
interested in. Some harder issues that we have not yet
thought about are multithreaded programs with global
variables, shared memory pages between processes, and
other mechanisms that step outside of the bounds of
single-thread access to data.

On the practical side, it is interesting to note that
the only implementation support for using data break-
point registers is highly inefficient, forcing a context
switch to a monitoring (parent) process. While this
may be natural for user-controlled debuggers to use,
automatic runtime monitors would benefit from new,
efficient support for these hardware resources.

Acknowledgments

This work was supported in part by the National
Science Foundation under grants CCR-0306457, EIA-
9810732, and EIA-0220590. The content of the infor-
mation does not necessarily reflect the position or the
policy of the Government and no official endorsement
should be inferred.

References

[1] T. Ball and J. Larus. Optimally Profiling and Tracing
Programs. 16(4):1319-1360, July 1994.

[2] M. Hind and A. Pioli. Which Pointer Analysis Should
I Use. In Proc. 2000 International Symposium on Soft-
ware Testing and Analysis, Aug. 2000.

[3] R. WAhbe, S. Lucco, and S. Graham. Practical Data
Breakpoints: Design and Implementation. In Proc.
1993 Conference on Programming Language Design and
Implementation, pages 1-12, June 1993.



