
Using Static Analysis to Determine Where to Focus Dynamic Testing Effort

Thomas J. Ostrand
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932

ostrand@research.att.com

Elaine J. Weyuker
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932

weyuker@research.att.com

Robert M. Bell
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932
rbell@research.att.com

Abstract

We perform static analysis and develop a negative bino-
mial regression model to predict which files in a large soft-
ware system are most likely to contain the largest numbers
of faults that manifest as failures in the next release, using
information from all previous releases. This is then used to
guide the dynamic testing process for software systems by
suggesting that files identified as being likely to contain the
largest numbers of faults be subjected to particular scrutiny
during dynamic testing. In previous studies of a large in-
ventory tracking system, we identified characteristics of the
files containing the largest numbers of faults and those with
the highest fault densities. In those studies, we observed
that faults were highly concentrated in a relatively small
percentage of the files, and that for every release, new files
and old files that had been changed during the previous re-
lease generally had substantially higher average fault den-
sities than old files that had not been changed. Other char-
acteristics were observed to play a less central role. We now
investigate additional potentially-important characteristics
and use them, along with the previously-identified charac-
teristics as the basis for the regression model of the cur-
rent study. We found that the top 20% of files predicted by
the statistical model contain between 71% and 85% of the
observed faults found during dynamic testing of the twelve
releases of the system that were available.

Keywords: Software Faults, Fault-prone, Prediction, Re-
gression Model, Empirical Study, Software Testing.

1. Introduction and Earlier Work

Much of today’s industry relies on software systems, and
requires that they behave correctly, perform efficiently, and
can be produced economically. For these reasons, it is im-
portant that we dynamically test systems to identify faults
residing in the code. For large systems, this can be a very
expensive and difficult process. Therefore, we want to de-

termine which files in the system are most likely to contain
the largest numbers of faults that lead to failures and pri-
oritize our testing effort accordingly. In that way we min-
imize the cost of testing and maximize the effectiveness of
the process. In order to do this, we have been investigat-
ing how to use data residing in a combined version control
and change management system used during all stages of
development, testing, and field release, to improve dynamic
testing.

Preliminary work was reported in an earlier paper [10]
which described a case study involving an industrial inven-
tory tracking system, developed over a three year period,
covering twelve quarterly releases. The goal of that research
was to do static analysis to identify structural characteristics
that are associated with files that contain particularly large
numbers of faults as determined by reported failures. The
data used for the static analysis resides in the combined ver-
sion control/change management system with some of the
data determined by statically analyzing the code while other
data were identified during the dynamic testing phase.

Data in this repository were collected during each of nine
development phases including requirements, design, devel-
opment, unit testing, integration testing, system testing, beta
release, controlled release, and general release. In this pa-
per we will describe the use of this information to develop
a statistical model to predict where faults are most likely to
reside in the code, which in turn can be used as an integral
part of the dynamic testing process. Thus our process relies
on a complex interplay between static and dynamic analy-
sis, and data associated with both of these types of analysis.

Our earlier studies considered the extent to which faults
clustered in a small proportion of files, and looked at file
characteristics such as size, age, whether the file is new to
the current release, and if not, whether it was changed dur-
ing the prior release, the number and magnitude of changes
made to a file, the number of observed faults during early
releases, and the number of faults observed during early de-
velopment stages.

Most of the previous research in this area, including



our earlier work [10], and that by other authors described
in [1, 2, 3, 5, 8, 9], was aimed at examining software sys-
tems to establish characteristics that may be associated with
high incidences of faults. In this paper, we go beyond
merely identifying characteristics and successfully build a
statistical model that can predict the incidence of faults in
future versions of a system. Specifically, this model is used
to predict the number of faults that will occur in each file
during the next release, based on current characteristics of
the file and its behavior in earlier releases. By selecting
the set of files that are predicted to account for a large per-
centage of the faults in the next release, we can encourage
testers to use that information to prioritize and focus their
(dynamic) testing efforts.

Thus our goal is to accurately identify a relatively small
percentage of the files that contain a large percentage of the
faults. Of course, there is no guarantee that all faults, or
even the most dangerous faults, will be located by this ap-
proach. However, if the prediction allows a large majority
of all outstanding faults to be identified more rapidly than
they would otherwise be found, then more resources will be
available for additional testing to ferret out the remaining
ones, or the process can be completed more quickly, and
hence cheaply, with equal success.

The work by Graves et al. [4] is most similar to ours,
as they also construct models to predict fault-proneness. In
contrast to Graves et al., however, our model makes pre-
dictions for individual files of the system, rather than for
modules that are collections of files as was done in [4]. The
fact that the granularity of the entities we use in our static
analysis is significantly finer than that used by Graves et al.
is important since it should facilitate the identification of
faults in a much more localized portion of the code, thereby
making debugging easier as well.

Other differences between our work and that done by the
Graves et al. group include the fact that they attempted only
a single prediction while our case study makes predictions
for each release beginning with Release 3, and continuing
through Release 12, allowing us to validate the effectiveness
of our model over a sustained period of time, with the sys-
tem at different levels of maturity. Also, their models use
the fault history of a single two-year period to predict faults
in the following two-year period, while our model uses data
from much shorter 3-month intervals to predict faults in the
following quarterly releases. This shorter interval provides
much more timely information to testers, who can use the
prediction from the current and prior releases to help focus
their testing efforts. In fact the goal of our work is to design
a process that can be used as a standard part of the develop-
ment process in an industrial environment to improve and
streamline the testing of systems requiring very high relia-
bility.

Our earlier study considered a file’s fault density, com-

puted in terms of faults per thousand lines of code (KLOCs).
In Section 3 of this paper we will describe our findings
related to several new questions regarding the number of
faults in a file. Among the new factors we consider is
whether there was a relationship between the complexity
of the file and the number of faults in a file, where complex-
ity is measured by the cyclomatic number [6] rather than
the number of lines of code. We also investigate the role of
the choice of programming language, the fault history in the
file during the previous release, and the amount of change
during the previous release.

As mentioned above, our ultimate goal is to be able to
identify a particular set of files in a new release that are de-
termined by our statistical model to be the most likely ones
to account for the largest numbers of faults. Since we have
determined in our earlier study that faults typically have a
highly skewed distribution, this should be possible to ac-
complish.

The remainder of the paper is organized as follows: In
Section 2, we describe the software system that is the sub-
ject of our case study and present some basic information
about file characteristics and the faults identified during
testing. Section 3 illustrates associations between selected
file characteristics and the number of faults identified during
a particular release. In Section 4 we present findings from
a negative binomial regression model to predict the number
of faults, in order to analyze relationships while controlling
for other characteristics. Finally, Section 5 presents conclu-
sions and describes plans for extending this work.

2. The System Under Study

The system used in this study is the same inventory track-
ing system as was used during the preliminary study [10].
As a standard part of the operating procedure for most de-
velopment projects at AT&T, whenever any change is to be
made to a software system, a Modification Request (MR) is
entered in the combined version control and change man-
agement system. Each MR includes information describing
the file(s) to be changed, the nature of the change (for ex-
ample, is this a new file being added, or a modification of
an existing one), the details of the change including specific
lines of code to be added, deleted, or changed, a description
of the change, and a severity indicating the importance of
the proposed change. These data are collected as part of the
normal development process and were therefore available
for every release of the system. It is these data that we will
statically analyze in order to use it to streamline dynamic
testing.

Some parts of the MR, such as the severity rating, are
highly subjective, and therefore may not be particularly use-
ful. Unfortunately, the standard MR format does not re-
quire the person initiating the request to indicate whether



Number of Lines Mean Faults Fault System Test and Later
Rel Files of Code LOC Detected Density Fault Density

1 584 145,967 250 990 6.78 1.49
2 567 154,381 272 201 1.30 0.16
3 706 190,596 270 487 2.56 0.45
4 743 203,233 274 328 1.61 0.17
5 804 231,968 289 340 1.47 0.19
6 867 253,870 293 339 1.34 0.18
7 993 291,719 294 207 0.71 0.10
8 1197 338,774 283 490 1.45 0.25
9 1321 377,198 286 436 1.16 0.16

10 1372 396,209 289 246 0.62 0.09
11 1607 426,878 266 281 0.66 0.21
12 1740 476,215 274 273 0.57 0.15

Table 1. System Information

the change is due to a fault correction or to some other
reason such as performance improvement, cleaning up the
code, or changed functionality. We have now succeeded in
getting the MR form changed to include a field that explic-
itly states whether the MR was due to the identification of
a fault, but this was not available at the time that the data
described here were entered or collected, and so we needed
a way of making that determination.

Since our study included a total of roughly 5,000 faults,
and many more MRs that were categorized as being other
sorts of changes, it was impossible to read through every
MR to make that determination. We therefore needed a
heuristic and used a rule of thumb suggested by the test-
ing group that an MR likely represents a fault correction if
either exactly one or two files were modified. In an infor-
mal attempt to validate this hypothesis, we sampled a small
number of MRs by carefully reading the text description of
the change. In the small sample space, nearly every MR
that modified one or two files was indeed a fault fix, and
every MR that modified a larger number of files (sometimes
as many as 60 files) was not a fault correction, but rather a
modification made for some other reason. For example, if
a new parameter was added to a file, every file that called it
had to be modified accordingly.

Changes can be initiated during any stage from require-
ments through general release. For most development envi-
ronments, change recording begins with integration or sys-
tem test, when control leaves the development team and
moves to an independent testing organization. For this sys-
tem, however, MRs were written consistently from require-
ments on. Almost three quarters of the faults included in
this study were identified during unit testing done by devel-
opers.

The final version of the system used in these studies (Re-
lease 12) included more than 1,700 separate files, with a to-

tal of more than 476,000 lines of code. Roughly 70% of
these files were written in java, but there were also small
numbers of shell scripts, makefiles, xml, html, perl, c, sql,
awk, and other specialized languages. Non-executable files
such as MS Word, gif, jpg, and readme files were not in-
cluded in the study.

Over the three year period that we tracked this system,
there was a roughly three-fold increase in both the number
of files and lines of code. At the same time, there was a
significant concentration of identified faults in files, going
from appearing in 40% of the files in Release 1 to only 7%
of the files by Release 12. One might hypothesize that the
increased fault concentration was simply a reflection of the
fact that the system was three times larger. However, when
the absolute numbers of files containing faults was consid-
ered, this fault concentration was also apparent. For exam-
ple, in Release 1, a total of 233 (of 584) files contained any
identified faults, by Release 8 only 148 (of 1197) files con-
tained any identified faults, and by Release 12, only 120 (of
1740) files contained any identified faults at all.

One important decision that had to be made involved
exactly how to count the number of faults in a file. If n
files were modified as the result of a failure, then this was
counted as being n distinct faults. This is consistent with
the convention used in References [8] and [3]. This implies
that each fault was associated with exactly one file.

Table 1 provides summary information about the first
twelve releases of the system, including lines of code and
faults. New files typically represent new functionality,
while changed files generally represent fault fixes. As the
system matured and grew in size, the number of faults
tended to fall, with the largest decrease occurring from Re-
lease 1 to Release 2. As one might expect, there is also
a general downward trend in the fault density as the sys-
tem matured, with some exceptions including Release 2.



Figure 1. Fault Distribution for Releases 1, 6, 8, 10, 12

The large dip at Release 2 likely occurred because it was
an interim release. While other releases all occurred at
roughly three month intervals, Release 2 occurred between
Releases 1 and 3, which were themselves done three months
apart. This likely led to a decreased number of faults iden-
tified during Release 2, and hence a decreased fault density.

The last column of the table restricts attention to those
faults identified during system test or later. As mentioned
above, it is uncommon for faults identified during earlier
stages of development to be included in a fault-reporting
system. Therefore, the system test fault densities are likely
to be more comparable to fault densities reported in other
empirical studies. Recall too, that for this system, gener-
ally one quarter or fewer of the faults at any release were
identified during system test or later.

3. Fault Concentration and Potential Explana-
tory Factors

In this section we discuss various potential additional
factors not considered in our earlier work that might ex-
plain the differential fault concentration in files. Once these
factors are understood, we will use them to build a statisti-
cal model that statically analyzes the software, to guide its
dynamic testing.

3.1 Concentration of Faults

Ostrand and Weyuker [10] reported that faults for this
system tended to concentrate in a relatively small proportion
of files at every release. We repeat here Figure 1 which orig-
inally appeared in [10], showing the concentration of faults
in Releases 1, 6, 8, 10, and 12. For clarity, we showed data
for only a sampling of the releases. The selected releases are
representative of the other releases that were not included.
We found that when too many releases were shown on the
same graph, it became impossible to distinguish among the
lines and therefore the import of the data was lost.

The files in each release are sorted in decreasing order
of the number of faults they contain. A point

���������
on the

Release R curve represents the fact that x% of the files in
Release R contain y% of the faults. For example, at Re-
lease 1, the ten percent of files with the most faults (58 files)
had 669 faults, representing 68% of the total for Release 1.
The curves show that the proportion of faults tends to be-
come increasingly concentrated in fewer files as the system
matures.

3.2 File Size

In [10], we examined the relationship between file size
and fault density and found that there was a tendency for



1

1

1
1

1

3

3
3

3

3

6

6

6

6

6

12

12

12

12

12

.0
5

.1
.2

.5
1

2
5

10
20

Fa
ul

ts
 p

er
 F

ile

50 100 200 500 1000 2000 4000
Lines of Code

1 1
1 1

1

3
3

3

3
3

6 6
6

6

6

12

12

12 12

12

.3
.5

1
2

4
8

Fa
ul

t R
at

e 
(p

er
 K

LO
C

)

50 100 200 500 1000 2000 4000
Lines of Code

Figure 2. Faults and Files Grouped by Size

small files to have higher average fault densities than large
files. We now consider the relationship between file size and
the average number of faults per file, rather than considering
the average fault density. This will be done by dividing the
files for each release into bins. For a given release, we sort
the files in increasing size order, divide all of these files into
five bins with roughly equal numbers of total lines of code,
and calculate the average faults per file for files in the bin.

For example, at Release 1, the first bin contains 398 files
ranging in size from 5 to 202 lines of code, with an average
size of 73 lines. Those files have a total of 189 faults, re-
sulting in an average of 0.47 faults per file. Subsequent bins
include progressively smaller numbers (94, 48, 32, and 12)
of larger files, with increasingly more faults per file. This
relationship is shown on a log-log scale for Releases 1, 3, 6,
and 12. As noted earler, these releases were representative
of all releases and were selected to show releases at various
stages of maturity. The lefthand portion of Figure 2 shows
that there is a strong relationship between file size and the
average number of faults per file. We also look at the fault
density to see whether there are a “disproportionate” num-
ber of faults that occur in larger files than smaller ones, and
if there are, whether it might make sense to limit the per-
mitted size of files.

The righthand portion of Figure 2 shows fault densities
versus file size for the same sets of bins and releases. The
figure shows that there is little or no relationship between
fault density and file size. Graphs for the releases not shown
in this figure tell similar stories. Although the fault densi-
ties for a given release tend to be higher for the two bins
containing the largest files than for the two bins containing

the smallest ones, the relationship is not monotonic for any
of the twelve releases. Specifically, across the releases, the
bin containing the largest files has the highest fault density
for only five of the twelve releases, and the bin containing
the smallest files has the lowest fault density for only three
of the twelve releases. Moreover, when results are aggre-
gated across releases, fault densities for largest files are only
about 20% higher than for the shortest files. We therefore
conclude that file size is not a strong predictor of fault den-
sity, but might be a good predictor of the absolute number
of faults in a file.

Note that there are two points of difference from our ear-
lier analysis of fault density and size. First, in the present
study, we look at the fault density data aggregated over files
in a given size range rather than considering each file indi-
vidually. Second, we include all files: those for which faults
were detected, and those for which there were no faults de-
tected. In the earlier work the fault density was computed
only for those files that contained faults.

3.3 Program Type

Table 2 compares fault densities for the most commonly-
used program types in this system. Because fault densities
are much lower for existing files, this table only includes
results for a file at the time of its first entry into the system
(new files). The observed fault densities vary by a factor
of close to 30, with makefiles having the highest average
density and xml files the lowest.



Fault
Type Files LOC Faults Density
makefile 94 2509 58 23.12
sh 140 7756 69 8.90
sql 80 6875 60 8.73
html 52 5639 22 3.90
java 1492 413420 1424 3.44
perl 68 17619 52 2.95
c 21 5824 8 1.37
xml 95 5070 4 0.79

Table 2. Fault Densities for New Files, by Program Type

4. Multivariate Analysis of the Number of
Faults

In this section we present results from negative bino-
mial regression models that predict the number of faults in
a file during a release, as a function of various file char-
acteristics. This modeling process serves three major pur-
poses. First, it provides information about the association
between the number of faults and individual file character-
istics while holding other file characteristics constant. Most
of this information is determined by statically analyzing the
code. Information about fault counts is, of course, deter-
mined by dynamic execution of the code, primarily on test
cases, but also during field operation. Data provided in [10]
showed that most faults were detected during either unit or
system testing, with only 2% of the faults detected during
field operation. The second purpose of the modeling pro-
cess is to provide a measure of the concentration of faults
beyond what is accounted for by file characteristics. This
allows us to compare the effectiveness of alternative sets of
factors. Third, the model produces predictions of the most
fault-prone files in a release, so that testing resources can
potentially be targeted more effectively. The third purpose
is the ultimate goal of this research. In Section 4.1, we out-
line the model, while in Section 4.2, we describe our find-
ings. In Section 4.3, we assess the efficacy of this strategy.

4.1 The Negative Binomial Regression Model

Negative binomial regression is an extension of linear
regression designed to handle outcomes like the number of
faults [7]. It explicitly models counts or outcomes that are
nonnegative integers. The expected number of faults is as-
sumed to vary in a multiplicative way as a function of file
characteristics, rather than in an additive relationship. Un-
like the related modeling approach, Poisson regression, the
negative binomial model allows for the type of concentra-
tion of faults apparent in Figure 1, in which we see a rela-
tively small percentage of files containing a large percent-

age of faults. This is done by adjusting inference for the ad-
ditional uncertainty in the estimated regression coefficients
caused by overdispersion.

Let
�
	

equal the observed number of faults and
��	

be a
vector of characteristics for file i. The negative binomial
regression model specifies that

� 	
, given

� 	
, has a Poisson

distribution with mean � 	 . This conditional mean is given
by � 	����	���������� , where

��	
is itself a random variable drawn

from a gamma distribution with mean 1 and unknown vari-
ance ����� � . The variance �!� is known as the dispersion
parameter, and it allows for the type of concentration we
observed for faults. The larger the dispersion parameter, the
greater the unexplained concentration of faults. However, to
the extent that this concentration is explained by file char-
acteristics

�"	
that are included in the model, the dispersion

parameter will decline.

4.2 Results

We used a negative binomial regression model fit to files
from Releases 1 to 12 with the unit of analysis being a file-
release combination. This yielded a total of 12,501 obser-
vations. The outcome is the number of faults predicted to be
associated with the file at the given release. All models were
fit by maximum likelihood using the procedure Genmod in
SAS/STAT Release 8.01 [11].

Predictor variables for the model are: the logarithm of
lines of code; whether the file is new, changed or unchanged
(the file’s change status); age (number of previous releases
the file was in); the square root of the number of faults in
the previous release (if any); program type; and release.
Logged lines of code (LOC), file age, and the square root of
prior faults are treated as continuous variables. File change
status, program type, and release are treated as categorical
variables, each fit by a series of dummy (0-1) variables, with
one omitted category that serves as the reference. For file
change status, the reference category is unchanged files, so
that the new and changed coefficients represent contrasts
with existing, unchanged files. For program type, the ref-
erence category is java files, the most commonly-occurring



Predictor Dispersion Amount Percentage
Variables Parameter Explained Explained
Null 13.38 NA NA
LOC 5.61 7.77 58.0
Release 11.00 2.38 17.8
File Change Status 7.29 6.09 45.5
Program Type 12.88 .51 3.8
Prior Faults 9.86 3.53 26.3
LOC, Release 3.91 9.47 70.8
LOC, Release, File Change Status 3.03 10.35 77.4
LOC, Release, File Change Status, Program Type 2.52 10.87 81.2
Full Model 2.27 11.11 83.0

Table 3. Estimated Dispersion Parameters Associated with Selected Models

Release 3 4 5 6 7 8 9 10 11 12
% Faults Identified 77 74 71 85 77 81 85 78 84 84

Table 4. Percentage of Faults Included in the 20% of the Files Selected by the Model

type for this system. We arbitrarily set Release 12 as the
reference release.

The strongest predictor in the model is the number of
lines of code. Because the model uses the logarithm of lines
of code, a coefficient of 1.00 would imply that the expected
number of faults grows proportionally with lines of code
(i.e., that fault density is unrelated to lines of code). The
estimated coefficient was 1.047 which exceeds 1.00. This
therefore provides some evidence that fault density grows
with lines of code, holding all else equal. We note, however,
that the 95 percent confidence interval does include 1.00.

For categorical predictors, each coefficient estimates
the difference in the logarithm of the expected number
of faults for the corresponding category versus the refer-
ence category. For example, for changed files, the coef-
ficient was 1.066. This indicates that changed files have
about exp(1.066) = 2.90 times more faults than existing,
unchanged files with otherwise similar characteristics. Of
course, the changed files are more likely to have other char-
acteristics (such as prior faults) indicating a propensity for
faults at the current release.

Table 3 displays estimates of the dispersion parameter
for a series of alternative models, to help show the relative
improvement associated with individual, or groups, of pre-
dictor variables. The estimated dispersion parameter for a
null model, with no predictors, is 13.38. The best single
predictors were lines of code and the file’s change status.
Lines of code reduced the dispersion to 5.61, a reduction
of 58.0%, while file change status explained 45.5% of the
dispersion. Use of the full model reduced the dispersion
parameter to 2.27, a reduction of 83.0%.

Various other potential predictor variables were tested,

but dropped from the model because they did little to im-
prove the predictive power when added to the model. Some
of the variables that we decided to exclude because they
did not significantly improve the predictive capability of
the model included: the number of changes for files that
changed since the previous release, whether or not the files
had changed prior to the previous release, and the logarithm
of the cyclomatic number (which was computed for java
files only). The cyclomatic number measures the complex-
ity of a file by counting the number of decision statements
in the file [6]. It has been found to be very highly corre-
lated with the number of lines of code. Although the cyclo-
matic number did predict faults well in a bivariate context,
it helped very little when used in conjunction with lines of
code (both logged), especially at later releases. In contrast,
lines of code remained important even in conjunction with
the cyclomatic number.

4.3 Targeting Fault-Prone Files for Testing

We now evaluate the potential of the regression model to
improve testing productivity by prospectively identifying a
subset of files that contain disproportionately many of the
faults at the next release. At each release, beginning with
Release 3, we created predictions based on fitting alterna-
tive models using data from only the previous releases (e.g.,
predictions for Release 3 used data from Releases 1 and 2).
For each release, these predictions are used to order the files
from most to least fault-prone, based on the predicted num-
bers of faults.

Table 4 shows the percentages of actual faults contained
in the top 20 percent of files identified by the full model at
each of Releases 3 to 12. The model prospectively identified



between 71% and 85% of the faults in the system, with an
average over all releases of 80%. Of course any percentage
of the files could have been selected, but we determined that
20% was a good choice providing a large percentage of the
faults while focusing on a relatively small percentage of the
files.

5. Conclusions and Future Work

We have used static analysis to develop a negative bi-
nomial regression model as a way of predicting which files
are most likely to contain the largest numbers of faults in
a new release, and thereby prioritize effort during dynamic
testing. This prediction was done for each release by using
only data collected during earlier releases. Our initial model
was quite successful in the sense that we were able to use it
to accurately predict, on average, the 20% of the files that
corresponded to 80% of the faults.

The factors that influenced our predictions include the
size of the file, the file’s change status, the number of faults
in the previous release, the programming language, and the
file’s age. Unlike Graves et al. [4], we found that change
history before the prior release was not needed in our mod-
els. This finding may be because our models are more spe-
cific in terms of content and time since we predict faults for
individual files during a series of releases. Graves et al., in
contrast, modeled faults for modules which are large groups
of files, during a single two year period.

So far we have designed our model based on the charac-
teristics identified as most relevant for the twelve releases of
one software system. Although this is a substantial system
that runs continuously, with quarterly new releases, there
may be characteristics of this system that are atypical, and
therefore the model may not be applicable to other systems
without tuning. In addition, as the system ages, the most
important factors may change somewhat. For this reason,
it is important to apply our model to additional releases of
the inventory tracking system, as well as to other systems
with different characteristics, developed in different envi-
ronments.

We have now collected data for an additional five re-
leases of the current system, and identified two additional
industrial software systems, each with multiple releases and
years of field exposure, for which data collection and anal-
ysis have begun. Once this is complete, we will apply the
current negative binomial regression model to the data col-
lected from these systems and see whether the prediction is
as successful as we observed for the first twelve releases of
this system. If not, we may have to identify additional rele-
vant characteristics or modify the role played by the factors
by defining new weightings. We are also designing a tool to
automate the application of our prediction model.

We consider our initial results extremely promising and

look forward to the routine use of this sort of predictive
modeling to focus software testing efforts, thereby improv-
ing both the efficiency and the effectiveness of our software
testing process. We have found that using static analysis to
guide and prioritize dynamic software testing is an excellent
way of improving the testing process for this system.

References

[1] E.N. Adams. Optimizing Preventive Service of Soft-
ware Products. IBM J. Res. Develop., Vol28, No1, Jan
1984, pp.2-14.

[2] V.R. Basili and B.T. Perricone. Software Errors and
Complexity: An Empirical Investigation. Communi-
cations of the ACM, Vol27, No1, Jan 1984, pp.42-52.

[3] N.E. Fenton and N. Ohlsson. Quantitative Analysis
of Faults and Failures in a Complex Software Sys-
tem. IEEE Trans. on Software Engineering, Vol26,
No8, Aug 2000, pp.797-814.

[4] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy. Pre-
dicting Fault Incidence Using Software Change His-
tory. IEEE Trans. on Software Engineering, Vol 26,
No. 7, July 2000, pp. 653-661.

[5] L. Hatton. Reexamining the Fault Density - Compo-
nent Size Connection. IEEE Software, March/April
1997, pp.89-97.

[6] T.J. McCabe. A Complexity Measure. IEEE Trans. on
Software Engineering, Vol2, 1976, pp.308-320.

[7] P. McCullagh and J.A. Nelder. Generalized Linear
Models, 2nd Edition, Chapman and Hall, London,
1989.

[8] K-H. Moller and D.J. Paulish. An Empirical Investiga-
tion of Software Fault Distribution. Proc. IEEE First
Internation Software Metrics Symposium, Baltimore,
Md., May 21-22, 1993, pp.82-90.

[9] J.C. Munson and T.M. Khoshgoftaar. The Detection
of Fault-Prone Programs. IEEE Trans. on Software
Engineering, Vol18, No5, May 1992, pp.423-433.

[10] T. Ostrand and E.J. Weyuker. The Distribution of
Faults in a Large Industrial Software System. Proc.
ACM/International Symposium on Software Testing
and Analysis (ISSTA2002), Rome, Italy, July 2002,
pp.55-64.

[11] SAS Institute Inc. SAS/STAT User’s Guide, Version 8,
SAS Institute, Cary, NC, 1999.


