
Towards Defining and Exploiting Similarities in Web Application UseCases
through User Session Analysis

Sreedevi Sampath
CIS

University of Delaware
Newark, DE 19716

sampath@cis.udel.edu

Amie L. Souter
Computer Science
Drexel University

Philadelphia, PA 19104
souter@cs.drexel.edu

Lori Pollock
CIS

University of Delaware
Newark, DE 19716

pollock@cis.udel.edu

Abstract

With the highly increased use of the web comes a sig-
nificant demand to provide more reliable web applications.
By learning more about the usage and dynamic behavior of
these applications, we believe that some software develop-
ment and maintenance tools can be designed with increased
cost-effectiveness. In this paper, we describe our work in
analyzing user session data. Particularly, the main contri-
butions of this paper are the analysis of user session data
with concept analysis, an experimental study of user ses-
sion data analysis with two different types of web software,
and an application of user session analysis to scalable test
case generation for web applications. In addition to fruitful
experimental results, the techniques and metrics themselves
provide insight into future approaches to analyzing the dy-
namic behavior of web applications.

1. Introduction

Broadly defined, a web-based software system consists
of a set of web pages and components that interact to form a
system which executes using web server(s), network, HTTP,
and a browser, and in which user input (navigation and data
input) affects the state of the system. A web page can be
either static, in which case the content is fixed, or dynamic,
such that its contents may depend on user input. Dynamic
analysis of web applications can provide information that
is useful in many ways. For instance, monitoring of an ap-
plication is used to provide information about the load of
traffic of user requests on an application at different times
of the day. Knowledge of the pages accessed by individ-
ual users is used to customize a web application for more
personalization. Information about the dynamic behavior
of the application under normal usage can be used for mod-
eling the application for analysis, coupled with modeling

based on static information. Logging of the dynamic be-
havior of a web application can be used for automatic test
case generation [8, 21, 28].

In this paper, we describe our work in analyzing user
session data. By making minimal configuration changes to
a web server, data can be collected as a set of user ses-
sions, each session being a sequence of URL and name-
value pairs1. The collection of logged user sessions can
be viewed as a set of use cases where a use case is a be-
haviorally related sequence of events performed by the user
through a dialogue with the system [11]. By learning more
about the usage and dynamic behavior of web applications
through user session data analysis, we believe that some
software development and maintenance tools can be de-
signed with increased cost-effectiveness. Particularly, the
main contributions of this paper are the analysis of user ses-
sion data with concept analysis, discovering the commonal-
ity of URL subsequences of objects clustered in concepts,
an experimental study of user session data analysis with two
different types of web applications, and an application of
user session analysis to scalable test case generation for web
applications. In addition to fruitful experimental results, the
techniques and metrics themselves provide insight into fu-
ture approaches to analyzing the dynamic behavior of web
applications through analysis of user session data.

2. Clustering via Concept Analysis

Concept analysis is a sound mathematical technique for
clustering objects that have common discrete attributes[3].
Concept analysis takes as input a setO of objects, a setA of
attributes, and a binary relationR � O � A, called acon-
text, which relates the objects to their attributes. To analyze
user sessions using concept analysis we define the objects
to represent user sessions, and the attributes of objects are
represented by URLs. While a user session is considered to

1The name-value pairs are associated with GET/POST requests.

GDef GReg GLog PLog GShop GBooks GMyInfo
us1 X X X
us2 X X X X X
us3 X X X X X
us4 X X X X X
us5 X X X
us6 X X X X X X

T

T

us6

GLog

PLog GBooks

us4

us1

GDef

us5

GReg

GShop

us3

GMyInfo

us2

Figure 1. (a) Relation table and (b) concept lattices for test suite reduction

be a set of URLs and associated name-value pairs usually,
we currently define a user session during concept analysis to
be the set of URLs requested by the user, without the name-
value pairs, and without any ordering on the URLs. This
problem simplification considerably reduces the number of
attributes to be analyzed, and results from our analysis of
user sessions described in section 5 provide evidence to jus-
tify this simplification.

The relation table in Figure 1(a) shows the context for a
set of user sessions for a portion of a bookstore web appli-
cation [10] which we use for our experiments. Consider the
row for the user, us3. The (true) marks in the relation ta-
ble indicate that user us3 requested the URLs GDef, GReg,
GLog, PLog and GShop. We distinguish a GET (G) request
from a POST (P) request when building the lattice, since
they are essentially different requests.

Concept analysis mutually intersects the user sessions
for all observed use cases of the web application. The re-
sulting intersections create a hierarchical clustering of the
user sessions. Concept analysis identifies all of the con-
cepts for a given tuple(O;A;R), where aconceptis a tuplet = (Oi; Aj) for which all and only objects inOi share all
and only the attributes inAj The concepts form a partial
order defined as(O1; A1) � (O2; A2); iff O1 � O2. The
set of all concepts of a context and the partial ordering form
a complete lattice, called theconcept lattice, which can be
represented by a directed acyclic graph with a node for each
concept and edges denoting the� partial ordering. Based
on the original relation table, concept analysis derives the
lattice in Figure 1(b) as a sparse representation of the con-
cepts.

A user sessions requests all URLs at or above the con-
cept uniquely labeled bys in the lattice. Similarly, a URL
u is accessed by all user sessions at or below the concept
uniquely labeled byu. The> of the lattice denotes the
URLs that are requested by all the user sessions. The?

of the lattice denotes the user sessions that access all URLs
in the context.

3. Examining Common Subsequences

Clustering of user sessions via concept analysis ensures
that all objects in a node have the same set of common at-
tributes. One question arises from clustering based on URL
sets without considering the ordering of the URLs in each
user session. Will user sessions represented by objects in
the same concept node represent similar use cases? To an-
swer this question, a measure of commonality of objects in
terms of sequencing (i.e., ordering) of URLs is needed. We
propose examining common subsequences as representative
of partial use cases of the user sessions.

Figure 2(a) shows an example concept node, the at-
tributes of that node, and the two user sessions represented
by the objects of that node. The sequence of URLs for a
user session are presented in columns, from left to right.
The set of subsequences common to both of these user ses-
sions are indicated below the node. For each concept node
containing more than one object, we determine the longest
common subsequence (LCS) of URLs among its objects.
For different values ofk, the set of unique subsequences
of URLs of lengthk that are common to all the objects
in the node is computed. This set is unique, in the sense,
that occurrence of the subsequence[PLog,GShop]multiple
times between the set of objects, is considered only once
in the common subsequence set of size 2. Also, if a sub-
sequence[GDef,GReg,GLog]is identified as common be-
tween objects of the node, then obviously all subsequences
of [GDef,GReg,GLog]are also common. For the sake of
fairness, we do not count subsequences of a larger sequence
as smaller subsequences. However, for example, if the se-
quence[GReg,GLog]shows up in our results in addition to
[GDef,GReg,GLog], it is because[GReg,GLog]occurs as

COMMON SUBSEQUENCES
[GDef,GReg,GLog]
[PLog,GShop]
[GReg,GLog]

us3 us6

GBooks

GDef
GReg
GLog

GDef
GReg
GLog

PLog
GShop PLog

GShop

GDef, GLog, GReg, GShop, PLog

ATTRIBUTES

USER SESSIONS

OBJECTS

us3,us6

NODE 003

GReg
GLog

GBooks
PLog
GShop

GShop
PLog
GLog
GReg

PLog

(a) (b)

Figure 2. (a) Example of common subsequences and (b) Spread of common subsequences over
attributes for a node in Bookstore

a totally different subsequence from the larger subsequence
in the use cases of the objects.

Another useful analysis is to examine the spread of the
common subsequences of URLs of the objects of a concept
node over the attribute space of that node. The graph in Fig-
ure 2(b) shows the spread of common subsequences over
the attribute space of a node in the lattice for one of the ap-
plications we used. The x-axis shows the attributes of the
concept node. For ease in showing URL ordering some of
the attributes are repeated along the x-axis. This node has
37 attributes all of which are not shown on the axis (be-
cause they do not appear in any subsequence of size greater
than 1). Continuous subsequences are represented by solid
lines. A dotted line between two points, denotes that only
the points form the subsequence. Only subsequences of
size greater than one are shown in the graph. In this ex-
ample graph, medium size subsequences cover some of the
attributes and other attributes are covered by smaller subse-
quences. This spread of attribute coverage by common sub-
sequences helps to provide some sense of the overall com-
monality of the use cases represented by different objects
put into the same concept node based only on common sets
of URLs.

In section 5.3, our experiments provide evidence that
concept analysis with single URLs as attributes clusters ob-
jects together such that they have both the same set of at-
tributes and large common partial use cases. In the next

section, we describe how clustering these user sessions can
be used in scalable test case generation.

4. Application to Test Case Generation

User session based testing exploits the ability of a web
server to log user sessions for automatic test case genera-
tion. Our key insight to obtaining a scalable approach is to
formulate user session based test case generation in terms
of concept analysis. Existing incremental concept analysis
techniques [9] can be exploited to analyze the user sessions
on the fly, and continually minimize the number of main-
tained user sessions.

In our initial work, we developed a heuristic for select-
ing a subset of user sessions to be maintained as the current
test suite, based on the current concept lattice. Given a con-
text with a set of user sessions as objectsO, we define the
similarity of a set of user sessionsOi � O as the number
of attributes shared by all of the user sessions inOi. Based
on the partial ordering reflected in the concept lattice, user
sessions labeling nodes closer to? are more similar in their
set of URL requests than nodes higher in the concept lattice.

Our heuristic for user session selection, which we call
test-all-exec-URLs, seeks to identify the smallest set of user
sessions that will still cover all of the URLs executed by
the original test suite while representing the common URL
subsequences of the different use cases represented by the

original test suite. This heuristic is implemented as follows:
The reduced test suite is set to contain a user session from
each node next to?, that is one level up the lattice from?. We call these nodesnext-to-bottomnodes. These nodes
contain objects that are highlysimilar to each other. If the
set of user sessions at? is nonempty, those user sessions
are also included. In our example in Figure 1, the original
test suite is all the user sessions in the original context. The
reduced test suite however contains only user sessions us2
and us6, which label thenext-to-bottomnodes. By travers-
ing the concept lattice to> along all paths from these nodes,
we will find that the set of URLs accessed by these two user
sessions are exactly the set of all URLs requested by the
original test suite.

5. Experiments

In order to investigate the effectiveness and usefulness of
user session clustering, and our heuristic for user session se-
lection, we performed experiments utilizing a medium and
large size application with real user sessions.

5.1. Research Questions

The experiments are designed to answer two questions
with regard to user session clustering and selection for scal-
able test case generation: (1) How effective is the choice of
using single URLs as attributes for clustering and is it rea-
sonable to choose only one object from a concept node as
the representative object? (2) How effective is thetest-all-
exec-URLsheuristic for selecting test cases for the current
test suite? Our hypotheses with regard to these questions
are:

1. The set of user sessions (i.e., objects) clustered into
the same concept node will have a high commonality
in the subsequences of URLs in their sessions. Thus,
cost-effective clustering based on single URLs is rea-
sonable, and only one representative from the next-to-
bottom nodes can be chosen to be included in the cur-
rent test suite.

2. In addition to covering all of the executed URLs of
the original test suite, the user sessions (i.e., objects)
of the next-to-bottom nodes (i.e., in the reduced test
suite) execute a high percentage of the subsequences of
URLs of the rest of the original test suite. We believe
that this provides evidence that the original use cases
are well represented by the reduced test suite.

5.2. General Methodology

We use an application from an open source e-commerce
site [10] to experiment with applying concept analysis to

user sessions to generate a reduced test suite. The applica-
tion is a bookstore, where users can register, login, browse
for books, search for specific books giving a keyword, rate
the books, buy books by adding them to the shopping cart,
modify personal information, and logout. The bookstore
application has 9,748 lines of code, 385 methods and 11
classes. Since our interest was in user sessions, we con-
sidered only the code available to the user when comput-
ing these metrics, not the code that forms part of bookstore
administration. The application uses JSP for its front-end
and MySql database for the backend. The application was
hosted on the Resin web server[22].

Emails were sent to various local newsgroups, and adver-
tisements were posted in the university’s classifieds web-
page, asking for volunteers to browse the bookstore. We
collected 123 user sessions, all of which were used in these
experiments. Some of the URLs of bookstore mapped di-
rectly to the 11 classes/JSP files and the rest were requests
for gif and jpeg images of the application. The size of the
largest user session in bookstore was 863 URLs and on av-
erage a user session had 166 URLs.

In addition to the bookstore, we also obtained user
logs from a University of Delaware production application,
uPortal[27], which is an abridged and customized version
of the university’s web presence, and has options for users
to personalize the view of the campus web. The application
is mainly open source and is written using Java, XML, JSP
and J2EE. uPortal consists of 38,589 lines of code, 4233
methods, and 508 classes. The logs contained 2083 user
sessions, which were also analyzed for the experimental
study2. URLs collected for uPortal mapped directly to 6
of the JSP/Java files, but the data carried on them varied
highly for each request. The size of the largest user session
in uPortal was 407 URLs and on average a user session had
14 URLs.

5.3. Commonality Among Attributes of a Concept

The focus of this experiment is to determine if objects
clustered together in a concept node, in addition to having
a set of common attributes, have a high commonality in the
subsequences of URLs. If this is true, then only one object
needs to be chosen from a given node for test case genera-
tion. Section 3 provided an introduction to the computation
of common subsequences of a set of user sessions and our
motivation to examine them. This section describes a new
metric and experiments we performed towards quantifying
the common subsequences of sets of user sessions.

Once common subsequences are generated as described
in section 3, the nodes are grouped such that all nodes with
the same numbern of attributes are members of the attr-

2We are currently creating a nonproduction uPortal version that main-
tains security of individual users’ personal information for replay.

(a) (b)

Figure 3. (a) Percent of attributes covered by different subsequence sizes and (b) Average percent of
attributes covered by nodes in different attribute size sets for Bookstore

(a) (b)

Figure 4. (a) Percent of attributes covered by different subsequence sizes and (b) Average percent of
attributes covered by nodes in different attribute size sets for uPortal

(a) (b)

Figure 5. Percent subsequences not covered by next-to-bottomnodes for (a) Bookstore and (b) uPortal

size[n] set. This grouping gives a sense of the nodes’ level
in the concept lattice. Nodes with a low number of attributes
will tend to be closer to>.

We define the following metric: the percent of attributes
(i.e., URLs) of a concept node that are included in (i.e., cov-
ered by) URL sequences of lengthk by objects (i.e., user
sessions) in the node. For each attr-size set, the percent
of attributes covered by each size subsequence is averaged
over all the nodes in the set.

The results of computing this metric for the user sessions
collected from bookstore and uPortal are shown in Figure
3(a) and Figure 4(a) respectively. The graphs show the
percent of attributes covered by different subsequence sizes
of nodes belonging to various attr-size sets. Coverage for
subsequences of size 1 is not shown, because it is obvi-
ously 100%. As the attr-size increases, the percent coverage
of attributes increases. These graphs are simply meant to
demonstrate the trends of attribute coverage and attempt to
illustrate that subsequences of varying sizes cover a reason-
able percent of the attributes. For example, in Figure 3(a),
size 10 subsequences across all attr-size sets cover between
27 to 62% of the attributes. In the bookstore, the largest
subsequence, size 37, covers 21% of the attributes in one
attr-size set and 30% in another. The computation produced
similar results with the logs of uPortal (Figure 4(a)) – Size
6 subsequences across all attr-size sets covered between 13
to 33% of the attributes. The largest subsequence of size 33
covers 33% of the attributes.

To enable viewing the trend of percent attributes covered
by nodes in different attr-size sets, the results were compiled
in a different manner. First, the average percent of attributes
covered (ai) by each concept nodei, over all subsequence
sizes was computed. To be fair, the maximum longest com-

mon subsequence value for all nodes in a certain attr-size
set is determined and is used in the above average, instead
of averaging over the maximum size subsequence of each
node. Then, an average percent coverage of the averages
(ai) for all the nodes in an attr-size set was computed. The
results are shown in Figure 3(b) for bookstore and Figure
4(b) for uPortal. These graphs demonstrate that the average
percent of attributes covered by nodes in various attribute
size sets is quite high.

These results strengthen our first hypothesis that indeed
there exists commonality in orderings of URLs between
objects of a concept node and that these common subse-
quences cover a high range of percentage of the attributes
of that node. Thus, clustering based on single URLs is rea-
sonable for clustering similar use cases, and choosing one
object from a given concept node as the representative test
case will not result in loss of the attributes covered or the use
cases represented by other objects in the node (Question 1).

5.4. Next-to-bottom Coverage of URL Orderings

The goal of this experiment is to support our hypothesis
of choosingnext-to-bottomnodes as the reduced test suite.
We believe that such a selection will not cause large loss
in representation of use cases associated with the remaining
nodes in the lattice.

Thereduced setis defined to contain the set of objects in
the set ofnext-to-bottomnodes of the concept lattice. The
difference between the objects that belong to the original
test suite and the objects that belong toreduced setis called
theremaining set. This experiment focused on determining
the frequency of sequences of URLs that were present in the
remaining setbut missing in thereduced set. This metric is

our measure to capture the ‘loss of coverage’ of use cases
in the remaining set by the reduced set.

As can be observed for bookstore, in Figure 5(a), for sub-
sequences of size 2, 38.37% of subsequences are missing,
66% of only size 3 subsequences are missing and 76.66%
of just size 4 subsequences are missing. For uPortal user
sessions, results shown in Figure 5 (b), 15.6% of size 2 sub-
sequences are missing, 29.1% of only size 3 and 36.9% of
only size 4 are missing. The percent missing subsequences
increases with the size of the subsequence, because it is
less likely for two user sessions to share exactly the same
long sequence of URLs as many short similar sequences.
For uPortal, we observed that there were only a few distinct
URLs in the application, and the lengths of the user sessions
were relatively small (average of 14 URLs).

It appears that thereduced setseems to be lacking the ex-
act same long subsequence present in theremaining setbut
a large number of smaller size subsequences are present.
Due to the clustering done by concept analysis, thereduced
set is guaranteed to have more distinct URLs than there-
maining set. So even if the exact same long subsequence
is absent there are bound to be other sequences (that cover
URLs missing in theremaining set) that are present in the
reduced setbut absent in theremaining set. The absence of
a relatively small number of subsequences in thereduced
setand the assurance due to concept analysis that, a larger
number of URLs are present in this set, makes it suitable
to be considered for the reduced test suite, and thus moder-
ately supports our second hypothesis (Question 2).

To summarize, the experiments performed in this section
support our hypotheses for user session clustering and se-
lection and our heuristic for test case generation. We have
performed some preliminary coverage and fault detection
studies of test suites created by these techniques and found
very promising results. More complete results will be de-
scribed in a future paper. We believe that the metrics de-
fined and the techniques applied can also be used for other
dynamic analysis of web applications.

6. Related Work

Concept Analysis and Clustering in Software Engineer-
ing. Snelting first introduced the idea of concept analysis
for use in software engineering tasks, specifically for con-
figuration analysis [13]. Concept analysis has also been ap-
plied to evaluating class hierarchies [25], debugging tem-
poral specifications [1], redocumentation [14], and recover-
ing components [7, 15, 26, 24]. Ball introduced the use of
concept analysis on test coverage data to compute dynamic
analogs to static control flow relationships [2]. The binary
relation consisted of tests (objects) and program entities (at-
tributes) that a test may cover.

Similar to concept analysis is cluster analysis in which

many techniques exist [12]. Such techniques are based on
finding groups of clusters in a population of objects, where
each object is characterized by a set of attributes. Cluster
analysis algorithms use a dissimilarity metric to partition
the set of objects into clusters.

To improve the accuracy of software reliability estima-
tion [20], cluster analysis has also been utilized to partition
a set of program executions into clusters based on the sim-
ilarity or dissimilarity of their profiles. It has been exper-
imentally shown that failures often correspond to unusual
profiles that are revealed by cluster analysis. Dickinson et
al. have utilized different cluster analysis techniques along
with a failure pursuit sampling technique to select profiles to
reveal failures. They have experimentally shown that such
techniques are effective [5, 6]. Clustering has also been
used to reverse engineer systems [4, 18, 19, 29].

Test Case Generation. Several tools exists that provide au-
tomated testing for web applications such as WebKing [28]
and Rational Robot [21]. These tools function by collect-
ing data from users through minimal configuration changes
to a web server. The data collected can be viewed as user
sessions, which is a a collection of user requests in the form
of URL and name-value pairs. To transform a user session
into a test case, each logged request of the user session is
changed into an HTTP request that can be sent to a web
server. A test case consists of a set of HTTP requests that
is associated with a particular user session. Different strate-
gies are applied to construct test cases for the collected user
sessions. In these tools, test case generators are based on
selecting most popular paths in web server logs. Studies
have shown promising results that demonstrate the fault de-
tection capabilities and cost-effectiveness of user session-
based testing [8]. They showed that the effectiveness of user
session techniques improves as the number of collected ses-
sions increases. However, the cost of collecting, analyzing,
and storing data will also increase.

Recently, analysis tools have been developed that model
the underlying structure and semantics of web-based pro-
grams. With the goal of providing automated data flow test-
ing, Liu, Kung, Hsia, and Hsu [16] developed the object-
oriented web test model (WATM). They utilized this model
to generate test cases, which are based on data flow between
objects in the model. Their technique generates def-use
chains as test cases, which require additional analysis in or-
der to generate test cases that can be utilized as actual input
to the application. They do not indicate how this step would
be accomplished.

Ricca and Tonella [23] developed a high level UML-
based representation of a web application and described
how to perform page, hyperlink, def-use, all-uses, and all-
paths testing based on the data dependences computed using
the model. Their ReWeb tool loads and analyzes the pages

of the application and builds a UML model. The TestWeb
tool generates and executes test cases. However, significant
intervention is required by the user for generating input.

Lucca et al. [17] recently developed a web application
model and set of tools for the evaluation and automation of
testing web applications. They developed functional testing
techniques based on decision tables, which help in generat-
ing effective test cases. However, the process of generating
test input in this manner is not automated.

7. Summary and Future Work

This paper has demonstrated that interesting usage pat-
terns of a web application can be uncovered through con-
cept analysis combined with common subsequence analy-
sis. This is just a first step towards better understanding
the dynamic behavior of web applications. We have shown
how this kind of analysis can be used for scalable, automatic
test case generation for this application domain. Our future
work includes modifying the heuristictest-all-exec-URLs
to consider degree of similarity between user sessions, ex-
ploring additional user session analyses that might be use-
ful for software engineering tasks, and combining user ses-
sion analyses with dynamic analysis of the actual program
code, towards accurate static modeling of web applications.
These combined efforts would provide a basis for creating
software development, testing, and maintenance tools for
reliable web applications.
Acknowledgements
We thank the U. of Delaware IT group for their aid in log-
ging uPortal sessions.

References

[1] G. Ammons, D. Mandelin, and R. Bodik. Debugging tempo-
ral specifications with concept analysis. InACM SIGPLAN
Conf on Prog Lang Design and Implem, 2003.

[2] T. Ball. The concept of dynamic analysis. InESEC / SIG-
SOFT FSE, pages 216–234, 1999.

[3] G. Birkhoff. Lattice Theory, volume 5. American Mathe-
matical Soc. Colloquium Publications, 1940.

[4] D. Bojic and D. Velasevic. Reverse engineering of use case
realizations in uml. InProceedings of the 2000 ACM sym-
posium on Applied computing, pages 741–747, 2000.

[5] W. Dickinson, D. Leon, and A. Podgurski. Finding failures
by cluster analysis of execution profiles. InProceedings of
the 23rd international conference on Software engineering,
pages 339–348. IEEE Computer Society, 2001.

[6] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure:
the distribution of program failures in a profile space. In
Proceedings of the 8th European software engineering con-
ference held jointly with 9th ACM SIGSOFT international
symposium on Foundations of software engineering, pages
246–255. ACM Press, 2001.

[7] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code.IEEE Trans on Soft Eng, 29(3):210–224,
Mar 2003.

[8] S. Elbaum, S. Karre, and G. Rothermel. Improving web
application testing with user session data. InInt Conf on
Soft Eng, 2003.

[9] R. Godin, R. Missaoui, and H. Alaoui. Incremental con-
cept formation algorithms based on galois (concept) lattices.
Computational Intelligence, 11(2):246–267, 1995.

[10] Open source web applications with source code.<http://www.gotocode.com>, 2003.
[11] I. Jacobson. The use-case construct in object-oriented soft-

ware engineering. In J. M. Carroll, editor,Scenario-based
Design: Envisioning Work and Technology in System Devel-
opment, 1995.

[12] A. Jain and R. Dubes.Algorithms for Clustering Data. Pren-
tice Hall, 1988.

[13] M. Krone and G. Snelting. On the inference of configuration
structures from source code. InInt Conf on Soft Eng, 1994.

[14] T. Kuipers and L. Moonen. Types and concept analysis for
legacy systems. InInt Workshop on Prog Compr, 2000.

[15] C. Lindig and G. Snelting. Assessing modular structureof
legacy code based on mathematical concept analysis. InInt
Conf on Soft Eng, 1997.

[16] C.-H. Liu, D. C. Kung, and P. Hsia. Object-based data flow
testing of web applications. InProceedings of the First Asia-
Pacific Conference on Quality Software, 2000.

[17] G. D. Lucca, A. Fasolino, F. Faralli, and U. D. Carlini. Test-
ing web applications. InInternational Conference on Soft-
ware Maintenance, 2002.

[18] C.-H. Lung. Software architecture recovery and restruc-
turing through clustering techniques. InProceedings of
the third international workshop on Software architecture,
pages 101–104, 1998.

[19] B. S. Mitchell, S. Mancoridis, and M. Traverso. Search
based reverse engineering. InProceedings of the 14th inter-
national conference on Software engineering and knowledge
engineering, pages 431–438, 2002.

[20] A. Podgurski, W. Masri, Y. McCleese, F. G. Wolff, and
C. Yang. Estimation of software reliability by stratified sam-
pling. ACM Trans. Softw. Eng. Methodol., 8(3):263–283,
1999.

[21] Rational Robot. <http://www-
306.ibm.com/software/awdtools/tester/robot/>, 2003.

[22] Caucho resin. http://www.caucho.com/resin/, 2002.
[23] F. Ricca and P. Tonella. Analysis and testing of web appli-

cations. InProceedings of the International Conference on
Software Engineering, May 2001.

[24] M. Siff and T. Reps. Identifying modules via concept anal-
ysis. InInternational Conf on Software Maintenance, 1997.

[25] G. Snelting and F. Tip. Reengineering class hierarchies us-
ing concept analysis. InSIGSOFT FSE, 1998.

[26] P. Tonella. Concept analysis for module restructuring. IEEE
Trans on Soft Eng, 27(4):351–363, Apr 2001.

[27] Uportal.<http://www.uportal.org>, 2004.
[28] WebKing.<http://www.parsoft.com>, 2004.
[29] T. Wiggerts. Using clustering algorithms in legacy systems

remodularization. InFourth Working Conference on Reverse
Engineering (WCRE ’97), 1997.

