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Abstract 

Modern component-based technologies, such as 

Enterprise Java Beans (EJB), simplify system development 

by allowing developers focus on business logic, while 

system services are provided by an underlying application 

server. A class of system services, such as transactions or 

security, control the context in which components run.  

The provisioning of such services can introduce 

performance overhead, as some system services might be 

executed redundantly. As EJB components bind 

dynamically, the determination that such an execution is 

redundant can be made only at runtime. We present a 

runtime mechanism for identifying and removing such 

redundant executions. 

1. Introduction

Companies increasingly rely on component-oriented 

technologies, such as Enterprise Java Beans (EJB) [1], and 

Commercial Off-The-Shelf (COTS) components, in order 

to build large scale applications, reduce system 

development costs and capitalize on third party expertise. 

Typically, component-based systems require an 

infrastructure that would support components, providing 

them with lifecycle services, intermediating component 

message interchange, etc. In the context of EJB, the 

infrastructure is referred to as an application server. 

A trend in component-oriented technologies, especially 

the ones targeted at enterprise systems, is the separation of 

system-wide logic from business logic. That is, concerns 

such as security, transactional isolation, concurrency, or 

persistence (system concerns), are separated from concerns 

dealing with what actual services the application provides 

for its clients (business logic). This trend leads to a 

separation in responsibilities, as well: application server 

providers (vendors) are responsible for implementing 

system logic, leaving application developers with the 

responsibility of designing and implementing business 

logic. A module of such business logic is an EJB 

component, or bean. 

Services such as transactions or security deal with the 

runtime context of a component, and they can be referred 

to as context management services. These services can be 

configured by means of deployment descriptors. 

Deployment descriptors are XML documents associated 

with each component, and include information indicating 

the configuration of context management services, on a 

per-method level. For example, for the security service, the 

configuration can indicate which user roles are allowed to 

execute the particular method. 

Typical applications built on EJB include e-commerce 

and e-banking sites. Such applications are required to be 

highly available, while facing a potentially unbounded 

request rate. Another characteristic of these applications is 

that, while being multi-user, they tend to have little, if any, 

inter-user interaction, which makes the handling of various 

user requests highly parallel. In such cases, throughput is 

heavily impacted by the speed with which user requests are 

handled [2]. 

EJB applications are built by deploying EJB beans on 

an application server. The performance of such an 

application depends both on the characteristics of the 

developer-written code, as well as those of the application 

server. The code that ties components to the application 

server is called “glue code”; it acts as a proxy, calling 

application server services before and after calls to the 

component’s methods. In some cases, glue code is referred 

to as “container code”, however, since the concept of a 

container and the boundary between containers and 

application servers is not clearly separated in the EJB 

specification, we avoided using the term “container” in this 

paper. 

Studies [3] have shown that a large proportion of the 

time spent to handle a client request is in fact spent within 

application server code. It is important, then, to optimize 

application servers in order to minimize their impact on 

performance. 

Currently, the only means available for reducing the 

impact the application server has on performance is 

application refactoring [4]. Such refactorings can indeed 

improve performance, but at the cost of other system 

qualities, such as modularity or maintainability. 

EJB components bind dynamically, at runtime. Based 

on how they bind, some context management services 

could be removed, in effect, minimizing the time spent 

within application server code. However, given the 

dynamic nature of EJB applications, the determination of 



what can be removed has to be done using runtime 

information. A more detailed presentation of this aspect of 

EJB has previously been made [5]. 

We present a solution for the analysis and removal of 

redundant executions of context management services 

between EJB components on an application server. The 

execution of a context management service is deemed 

redundant if the goal it tries to achieve has already been 

achieved by a previous execution. For example, if a 

transaction context is available, and the control is passed to 

a method requiring such a context, no additional effort is 

required for providing this context. 

The effect of execution removals is the generation of 

new glue code versions for a component. 

Our solution is generic with respect to context 

properties, i.e. the solution is not applicable only to the 

transactions and security services available in EJB.  

Note that our effort is not concerned with dealing with 

remote method invocations in EJB, and all inter-

component method invocations described here happen 

locally, within the same virtual machine. We are also 

concerned only with the cases where contexts are managed 

by the application server; EJB permits “bean-managed 

transactions” for example, which is a case we do not treat. 

2. Solution Overview 

The solution consists of extracting runtime information 

from an application and combining it with static 

information, to generate decisions as to which context 

management services are redundant. 

To deem an execution redundant in a situation, it is 

necessary to know the context in which that execution is 

performed. That is influenced by the call path followed to 

this point, and the context requirements the previous 

methods in the path had. However, this is not sufficient at 

all times. Suppose that method m1 of component A 

indicates that only “admin” users can call it, and method 

m2 of component B indicates that only “manager” users 

can call it. Suppose m1 requests a binding to B and calls 

m2. Now suppose that happens under the credentials of 

user “Joe”, who is an admin, as well as a manager. In this 

case, only one security context check is necessary, before 

m1 is called. 

This would mean that we can only deem redundant 

service executions in cases when these services do not take 

into account the runtime value of the context. However, in 

the case of the example above, if it were known that “all 

admins are managers”, the security context check at m2 

could be deemed redundant. We call this kind of 

information “application specific facts”. 

A second problem that needs to be solved is 

accommodating the fact that the same component might 

participate in different binding scenarios in which different 

services might be deemed redundant.  

We will first describe the structure of the information 

required for our solution, and then describe a system that 

uses this information to optimize an application server. 

2.1. Representing Runtime Information: Binding 

Graphs 

Binding graphs are a refinement over the runtime data 

the monitoring service is producing. A binding graph 

reflects the order in which bindings took place when a 

system client request was handled. 

A binding graph is essentially a tree. Any node has at 

most one parent. One node is associated with a component. 

Each node has a list of method elements. Each method 

element has a list of binding elements. A binding element 

contains at most one node. This structure is depicted in 

Figure 1. 
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Figure 1 binding graph structure 

An example of a binding graph is depicted in Figure 2. 

Nodes are illustrated as circles. An arc indicates the act of 

binding.  

The root node has always only one element in the 

method set, as that is the method called by an external 

client. In our example (Figure 2), method1 of component A

eventually initiates a binding to B and then C. The order is 

not important, as both bindings happen in the context of A,

and, since we assume that the context is not modified 

within a method, the contexts these bindings take place in 

are identical.  

Next, method1 of B initiates a binding to D. It is implied 

that method1 of B was called by method1 of A, since the 

binding arc ending in this node started there. Note how, 

because components B and E are being bound to twice, but 

in different contexts, therefore, they are being represented 

for each of those cases. For any node in the graph, the 



context it is bound in can be determined by identifying its 

parents, then tracing down the tree the binding process. 
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Figure 2 example of a binding graph 

Note that a method element in a node describes the 

context in which calls to the methods in a child (bounded) 

node are performed. The purpose of the binding graph is to 

allow for the evaluation of the context in which 

components are used. For this reason, leaf nodes in a 

binding tree do not contain method elements, as they 

would not help evaluate anything (no further bindings). 

For the same reasons, if method1 of component A called a 

method “method0” on component B, which did not lead to 

any further bindings, that information would not be 

represented in the tree. 

In the case of a component calling its own methods, two 

possibilities exist: either the methods are called internally, 

without application server support (and no context 

management being performed), or through the application 

server, with context management. The latter would require 

a rebinding, which would appear in the binding graph as 

such. The former does not introduce any relevant 

information. Suppose method1 of C calls method2 of C

internally, which in turn requests the binding to B. That 

binding still happens in the context of method1: since no 

application server support was used to call method2, no 

context management services are executed there. 

2.1.1 Comparing Binding Graphs and Call Graphs 

A call graph describes calls between various components 

in a system. Binding graphs filter out only those calls that 

lead to other components being bound. For this reason, 

more than one call graph can correspond to a single 

binding graph. Using our example in Figure 2, method1 of 

component A can call some other methods on B after it 

binds to it, however, that is not important for our purposes, 

as they all happen within the context of method1 of A. In 

fact, as it will be seen, what is optimized in this case is the 

complete glue code of B, given that any method might be 

called in the context of method1 of component A.

2.2. Component Framework Rules 

Deployment descriptors include information describing 

requirements placed on the context of execution by each 

method of a component. This information is encoded as 

configuration properties that affect the semantics of the 

execution of a corresponding context management service. 

For example, “transaction required” means that the method 

will be executed in the same transactional context as the 

caller, or, if that is not available, a new one will be created.  

Currently, the set of possible configurations is 

published as part of the EJB specification and it’s 

expressed in natural language. However, we can formally 

express them in a rule language, like Jess [6]. These rules 

describe how the context is transformed and whether 

something needs to be done to do that. For example, for 

“transaction required”, the rule can indicate that, if no 

transaction context is available, the transactional context 

management service is to be run, and a new transactional 

context will be produced. We can refer to these rules as 

“component framework rules”. 

An example of such a rule is given in Figure 3. 

(defrule transaction_required_noCtx  

  (transaction required ?method)

  (not(transactionCtx)) 

  => 

  (assert (transactionSvc execute ?method)) 

  (assert (transactionCtx)) 

)

Figure 3 component framework rule example 

The rule is written in Jess, a rule language similar in 

syntax to lisp. It describes what the “transaction required” 

configuration flag in any deployment descriptor means, in 

terms of executing the transaction context management 

service (transactionSvc) and in terms of the state of the 

context (transactionCtx). Here, the rule treats the case in 

which there is no transactional context available and so 

one has to be created. In order to achieve that, the 

transactions context management service has to be 

executed. 

2.3. Context Requirements as Rule Engine Facts 

Context framework rules determine a vocabulary that is 

used to describe the individual context requirements each 

method of a component. We will refer to such facts as 



context requirement facts. The translation between the 

syntax used for context requirements in deployment 

descriptors, and rule engine facts, is automatic. Translators 

can be reified using XSLT documents. 

2.4. Application-Specific Facts 

Relationships between security roles, as given in a 

previous example, constitute static information pertaining 

to a particular system. This information is encoded as facts, 

digestible by a rule engine. In our example, “all admins are 

managers” is such a fact. We will refer to these facts as 

application-specific facts. 

2.5. Putting It All Together 

The information in binding graphs, together with 

context requirement facts, describes a runtime scenario in 

terms of a succession of context requirements. Such 

information, together with application-specific facts, can 

be fed for processing by component framework rules in a 

rule-based engine. The output of the rules indicates which 

context management services need to be run. In other 

words, we have a mechanism for determining which 

services are redundant. 

3. Solution implementation 

Our focus is to develop a runtime optimization solution 

for application servers. It has to be easily integrated within 

existent application servers (R1). Extending it to support 

additional context management services should be done 

with minimal effort (R2). Implicitly, it is important to 

ensure that the overhead introduced by our solution does 

not exceed the performance improvements it generates 

(R3). 

The optimization solution is able to analyze runtime 

information about an EJB application and decide in which 

cases context management service executions are 

redundant. This decision is based on both runtime 

information – binding grapsh, as well as static information 

pertaining to the system installation and the EJB 

framework – component framework rules, application-

specific facts, and the information contained in deployment 

descriptors. 

3.1. Overview 

Our solution is implemented as an application server 

service, and consists of: a monitoring service that extracts 

runtime information from an application; a binding graph 

filter which extracts binding graphs from the runtime 

information produced by monitoring (Figure 4). An 

optimization coordinator controls the optimization of 

binding graphs by employing an expert system built on top 

of a forward chaining rule engine [7], such as Jess, which 

aggregates static and dynamic information and decides 

which services are redundant for a particular component. 

The glue code generator maps these decisions into the 

application server by generating specialized glue code 

variants. Finally, the call graph isolator ensures that glue 

code variants are called only in the situation they were 

optimized for. 

Optimizations can be considered valid only for the 

period of time the set of components on an application 

server remains unchanged. Strategies for dealing with 

changes of the component set are under investigation; a 

trivial solution is to cancel all optimizations and start re-

optimizing the system. 

Our system is initialized with the set of component 

framework rules. Application-specific facts can be 

inserted, ideally pre-runtime, either manually, or 

automatically, if a facility is provided for that; however, 

this is outside the scope of our research.  

Figure 4 system overview 

3.2. Overhead Considerations 

Here we discuss aspects related to requirement R3. The 

optimization of a binding graph might be resource-

consuming, but it occurs only once per graph. The 

overhead produced by our solution should be minimal, as 

most binding graphs should be optimized immediately 

after the application is started and serving requests. The 

more diverse the types of requests the server is presented 

with early-on, the faster the application will be fully 

optimized. Based on this observation, we can distinguish 

two different utilization scenarios of our solution 

(presented below). They differ in the period of time the 

optimizations take place. Since the active entity (the source 

of events) is the monitoring service, the differentiator 

between the two scenarios is the period of time the 

monitoring service is active.  



3.2.1 Continuous Monitoring 

In this scenario, monitoring is always active; therefore, 

optimizations can happen at any time. Since any new 

interaction is immediately optimized, the benefit is that all 

interactions end up optimized after the first time they are 

executed. The drawback is that monitoring imposes an 

overhead, which might not be desirable. This scenario is 

appropriate for the case in which the application under 

optimization is not well known, or in which monitoring is 

expected to be constantly turned on.  

3.2.2 Training Period 

In this case, monitoring is turned on for a period of time 

called training period, after which it’s turned off. 

Therefore, optimizations can occur only during the training 

period. Ideally, the system would be exposed to as many 

different interactions as possible during this period, to 

minimize the number of un-optimized interactions left at 

the end of the training period. Insight into the system 

structure and behaviour is expected.  

This scenario is appropriate for cases in which 

monitoring would not be normally turned on, and in which 

the application behaviour is well known. In such cases, it 

offers the benefit of having a fully optimized system 

(achievable during the training period), at no long-time 

extra performance cost due to monitoring. 

3.3. Monitoring Service 

The monitoring service extracts runtime events from an 

application, and makes them available to registered 

listeners. Such a listener is the Optimization Coordinator.  

The development of this service is not part of our effort, 

as there are both academic [8] and commercial efforts in 

this area, which we can integrate with. 

3.4. Binding Graph Filter 

This component is tightly coupled to the monitoring 

service and processes whatever runtime information this 

service produces, extracting binding graphs. The tight 

coupling is due to the fact that there is no standard 

monitoring facility for EJB applications, and thus, the 

interface the various existing monitoring solutions offer 

needs to be adapted. 

3.5. Optimization Coordinator 

The optimization coordinator receives for processing 

one binding graph at a time from the binding graph filter. It 

maintains a set of binding graphs that it had optimized. 

Any binding graph is first checked against the optimized 

graph set. If it is not there (un-optimized), the binding 

graph is traversed depth first. It passes the context 

requirements of the method at the top to the rule engine, 

and then follows the first binding to the next node. Here, it 

passes all the context requirements of all the methods of 

the component associated with this node. At this stage, the 

rule engine decides, for each such method, which context 

management services are required. 

The optimization coordinator invokes the glue code 

generator with these facts.  

Next, the requirements of the methods are retracted, and 

we follow the next binding down by pushing the 

requirements of the method that owns the binding. The 

algorithm is presented in pseudocode in Figure 5. 

Given RE, a rule engine 

optimize (component c)
 for each method m in c
   
  push m's requirements in RE

  for each binding b in m
   c'= the component associated with b
   r=the set of requirements of the methods of c'
   push r in RE
   rc=get redundant context management executions 
from rule engine, for c’
   generate glue code for c' given rc
   optimize(c')
   retract r from RE
  end 

  retract m's requirements from RE

 end 
end

Figure 5 optimization algorithm 

Essentially, the algorithm generates a high-level 

specification of the glue code associated with a 

component, given a set of facts that can be known about 

the runtime environment that component might be run in. 

3.6. Glue Code Generation 

Requirement R1 governs the design of the integration 

between application server and the rule engine. There has 

to be minimal coupling between the rule engine and 

application server code, in particular, component glue 

code. However, we need to make some assumptions. 

A strategy employed by some application servers, such 

as JOnAS [9], is to generate component glue code when 

the component is deployed. Usually, code templates are 

used, which are next run through a code generation engine, 

such as Velocity [10]. We developed our solution around 

the assumption that such a mechanism is being used. 

The optimization coordinator has to use the information 

from the rule engine in order to generate specialized 

versions of glue code for each component. We opted to use 

a pre-processor solution. Within the code templates used to 

generate glue code, calls to context management services 

are tagged. Tagging can either be done with a technology 

such Velocity or XDoclet [11]. 



If the pre-processor is started with a set of properties, 

tagged areas of code can be excluded. Essentially, the code 

generation process is made aware of assumptions that can 

be made about the runtime environment of the code to be 

generated, which results in a customization of this code. 

There has to be a mapping between facts produced by 

the rule engine and tags in the code. This can be ensured, 

as the “link” between these two is the set of component 

framework rules, which are available at the time glue code 

templates are developed. 

3.7. Isolation of Call Graphs 

In order to inject the optimized glue code back in the 

server, a major obstacle has to be overcome: the fact that 

the same component can participate in different 

interactions, which in turn can yield different glue code 

optimizations. 

Our solution is to provide variants of glue code 

simultaneously, for the same component, and provide 

client components with a selection mechanism that allows 

them to pick the correct variant. A glue code variant of a 

component A is “correct” with respect to a client C in the 

following sense: consider the binding graph B that, through 

optimization, leads to the production of the glue code 

variant GcV-A, for component A. Let B’ be the binding 

graph associated with the call path in which C is part of. If 

C has the same position (same parents) in B’ and B, and C

tries to bind to A, then GcV-A is the correct variant. 

Refer to Figure 2. In that case, all external clients would 

bind to A via a variant of glue code dedicated to such 

clients. In this particular case, when A’s method1 is called, 

the glue code installs a specialized naming provider. When 

an attempt is made to bind to B, this naming provider 

returns a reference to B’s glue code variant which 

optimizes for the current situation (i.e. A’s method1

binding to B). This glue code variant of B installs a naming 

provider when B’s method1 is called which “knows” 

which version of D’s glue code to chose; similarly, for 

method2 and component E.

The call graph isolator requires the modification of the 

application server in order to allow for multiple glue code 

variants. 

3.8. Extensibility 

To extend our solution to support other context 

management services (R2), the component framework rule 

set has to be updated, and glue code templates need to be 

tagged accordingly. The ability of extending our solution is 

not so much targeted at EJB applications, as more to the 

migration of our solution to other frameworks, similar to 

EJB, such as CCM [12]. 

4. Related Work 

4.1. Operating Systems 

Context switching optimizations were analysed in the 

domain of operating systems (OS). For example, the 

authors of [13] optimize thread-related context switching 

overhead, by analysing liveliness information of context 

elements (such as registers). In [14], the authors attempt to 

avoid context switching incurred at inter-process 

communication. 

There are two core differences between context 

switching optimizations in the OS area and our effort, 

which spawn from differences in problem domains. One 

lies with the entity that controls the context. In the OS 

case, the context of execution of a process is represented 

by a set of values (registers, stack pointer, etc) that belong 

to the process in the sense that it is the one that 

alters/controls them. The OS only saves and loads such 

values, but does not control them. In the components case, 

contexts are completely out of the scope of a component’s 

control. The context is constrained outside the 

component’s code, and is managed by the platform 

(application server). This allows for greater opportunities 

for analysis and optimization in the components case, as all 

the information related to context management can be 

made accessible by the platform to the agent performing 

the optimization. 

The other difference lies with the composition of the 

context being managed. In the case of operating systems, 

this composition is “a given”; it typically consists of CPU 

registers. In general case we are focusing on, the 

composition of the contexts is variable. 

4.2. Programming Language Compilers 

The area of code optimization, including redundancy 

elimination, in the context of compilers, has been under 

extensive research and has achieved maturity. Currently, 

the vast majority of programming languages are compiled 

by compilers that make use of optimizers. In the case of 

interpreted languages, or languages that run over virtual 

machines, as the case is for Java, the virtual machine can 

provide an additional set of optimizations for a program. 

Optimizations operate on information that is extracted 

from code, and, sometimes, on information related to the 

target platform. Typically, an intermediate representation 

is produced, on which optimization algorithms are run. 

The result is a modified representation, which is 

functionally equivalent to the first one, but optimizes for a 

particular aspect (i.e. space, time)  

One requirement for redundancy elimination algorithms 

is that full data flow information be available [15]. In the 



case of EJB applications, this is generally impossible, as 

the execution can be distributed: for example, security 

checks could happen on a remote machine. 

4.3. Optimization of Component Systems 

The authors of [16] propose to optimize a component 

system at runtime. Their approach consists of recompiling 

an application built out of components, as interactions 

between components become apparent. The system is 

continuously evaluated and recompiled. Initial results 

indicated that a continuous evaluation-recompilation cycle 

is performance-detrimental. 

The authors of [17] suggest that specialization scenarios 

for components be packaged together with components. 

The methods of specialization suggested are at the code 

level. 

The most important difference between these 

approaches and ours is that code-level optimizations will 

miss out the semantics of context management services. 

We believe that our approach and the ones presented here 

can be applied conjointly, but they will optimize different 

aspects of the application in cause.  

A number of authors propose that application servers 

offer facilities that would allow applications adapt to 

changes in their environment. An example is the work 

presented in [18]. Enterprise services tied to an EJB 

application server can be added/removed or altered. This is 

similar to what we propose, in a sense, as the effect of our 

optimizations is that the set of services that gets executed 

at inter-component calls gets altered. The difference lies 

with the scope of the alteration: in our case, it is specific to 

a particular interaction scenario in which a particular 

component participates, and is done in response to the 

discovery of redundant context management service 

executions; in [18], modifications affect all such 

interactions, and are performed as response to a change in 

the application environment (such as battery power or 

network conditions). 

JBoss [19] offers the capability of adding or removing 

services provided by the application server for a 

component. Similar to the approach above, this capability 

has the shortcoming of affecting all interactions with that 

component. This approach cannot support the case in 

which the same component participates in different 

execution contexts. 

5. Current Status and Future Work 

5.1. Optimization Study 

We conducted feasibility tests for our rule engine based 

optimization solution. We started by defining component 

framework rules for the transaction service, and extracting 

context requirements as facts from a set of components. No 

application-specific facts were used at this time.  

We chose the transactions service for this test as it 

offers a larger array of configuration options, when 

compared to security. 

The experience supports the current solution. The next 

immediate step is to include security rules, together with 

application-specific facts. 

5.2. Call Graph Isolator Implementation 

We have implemented a prototype call graph isolator on 

JBoss. We have used this prototype in order to gain more 

insight into the design implications related to it, as well as 

verify whether such a mechanism would introduce any 

overhead. A full discussion of the isolator is out of the 

scope of this paper. JBoss was used for this prototype 

purely for previous experience reasons. Since JBoss uses a 

reflective approach to glue code, it is not suited for 

implementing the rest of our solution; however, it proved 

sufficient for the purpose of this prototype. 

5.3. Future Work 

We intend to finalize a prototype optimization 

coordinator and engine, together with the corresponding 

set of rules for transactions and security services, as 

supported by EJB. 

The next step will be to analyse the proposed glue code 

generation mechanism, in terms of technology used. Its 

applicability across various application servers will also be 

analysed. As we assume a particular glue code generation 

style in-place (template-based code generation), we will 

analyse glue code generation solutions for other cases - 

JBoss, for example, employs a reflective approach. 

6. Conclusions 

We presented the problem of determining which context 

management service executions are redundant for 

applications built on the Enterprise Java Beans component 

framework.  

The proposed solution consists of aggregating static and 

dynamic information and producing variants of glue code 

that contain only context management service calls that are 

not redundant. Static information consists of component 

framework rules, context requirement facts, and 

application-specific facts. Dynamic information is encoded 

in binding graphs. The decision as to which service calls 

are redundant is made by a rule-based engine. 

Glue code variants are produced by augmenting a 

currently employed method, template-based code 

generation. 



Glue code variants are bound to the situation they are 

specialized for (i.e. a particular position in a call graph). A 

method has been presented and prototyped for ensuring 

that this binding is respected every time calls are passed 

between components. 
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