
Using Runtime Information for Adapting Enterprise Java Beans Application

Servers

Mircea Trofin*

Performance Engineering Laboratory

Dublin City University

mtrofin@acm.org

John Murphy**

Department of Computer Science

University College Dublin

j.murphy@ucd.ie

*,** The authors’ work is funded by Enterprise Ireland Informatics Research Initiative 2002.

Abstract

Modern component-based technologies, such as

Enterprise Java Beans (EJB), simplify system development

by allowing developers focus on business logic, while

system services are provided by an underlying application

server. A class of system services, such as transactions or

security, control the context in which components run.

The provisioning of such services can introduce

performance overhead, as some system services might be

executed redundantly. As EJB components bind

dynamically, the determination that such an execution is

redundant can be made only at runtime. We present a

runtime mechanism for identifying and removing such

redundant executions.

1. Introduction

Companies increasingly rely on component-oriented

technologies, such as Enterprise Java Beans (EJB) [1], and

Commercial Off-The-Shelf (COTS) components, in order

to build large scale applications, reduce system

development costs and capitalize on third party expertise.

Typically, component-based systems require an

infrastructure that would support components, providing

them with lifecycle services, intermediating component

message interchange, etc. In the context of EJB, the

infrastructure is referred to as an application server.

A trend in component-oriented technologies, especially

the ones targeted at enterprise systems, is the separation of

system-wide logic from business logic. That is, concerns

such as security, transactional isolation, concurrency, or

persistence (system concerns), are separated from concerns

dealing with what actual services the application provides

for its clients (business logic). This trend leads to a

separation in responsibilities, as well: application server

providers (vendors) are responsible for implementing

system logic, leaving application developers with the

responsibility of designing and implementing business

logic. A module of such business logic is an EJB

component, or bean.

Services such as transactions or security deal with the

runtime context of a component, and they can be referred

to as context management services. These services can be

configured by means of deployment descriptors.

Deployment descriptors are XML documents associated

with each component, and include information indicating

the configuration of context management services, on a

per-method level. For example, for the security service, the

configuration can indicate which user roles are allowed to

execute the particular method.

Typical applications built on EJB include e-commerce

and e-banking sites. Such applications are required to be

highly available, while facing a potentially unbounded

request rate. Another characteristic of these applications is

that, while being multi-user, they tend to have little, if any,

inter-user interaction, which makes the handling of various

user requests highly parallel. In such cases, throughput is

heavily impacted by the speed with which user requests are

handled [2].

EJB applications are built by deploying EJB beans on

an application server. The performance of such an

application depends both on the characteristics of the

developer-written code, as well as those of the application

server. The code that ties components to the application

server is called “glue code”; it acts as a proxy, calling

application server services before and after calls to the

component’s methods. In some cases, glue code is referred

to as “container code”, however, since the concept of a

container and the boundary between containers and

application servers is not clearly separated in the EJB

specification, we avoided using the term “container” in this

paper.

Studies [3] have shown that a large proportion of the

time spent to handle a client request is in fact spent within

application server code. It is important, then, to optimize

application servers in order to minimize their impact on

performance.

Currently, the only means available for reducing the

impact the application server has on performance is

application refactoring [4]. Such refactorings can indeed

improve performance, but at the cost of other system

qualities, such as modularity or maintainability.

EJB components bind dynamically, at runtime. Based

on how they bind, some context management services

could be removed, in effect, minimizing the time spent

within application server code. However, given the

dynamic nature of EJB applications, the determination of

what can be removed has to be done using runtime

information. A more detailed presentation of this aspect of

EJB has previously been made [5].

We present a solution for the analysis and removal of

redundant executions of context management services

between EJB components on an application server. The

execution of a context management service is deemed

redundant if the goal it tries to achieve has already been

achieved by a previous execution. For example, if a

transaction context is available, and the control is passed to

a method requiring such a context, no additional effort is

required for providing this context.

The effect of execution removals is the generation of

new glue code versions for a component.

Our solution is generic with respect to context

properties, i.e. the solution is not applicable only to the

transactions and security services available in EJB.

Note that our effort is not concerned with dealing with

remote method invocations in EJB, and all inter-

component method invocations described here happen

locally, within the same virtual machine. We are also

concerned only with the cases where contexts are managed

by the application server; EJB permits “bean-managed

transactions” for example, which is a case we do not treat.

2. Solution Overview

The solution consists of extracting runtime information

from an application and combining it with static

information, to generate decisions as to which context

management services are redundant.

To deem an execution redundant in a situation, it is

necessary to know the context in which that execution is

performed. That is influenced by the call path followed to

this point, and the context requirements the previous

methods in the path had. However, this is not sufficient at

all times. Suppose that method m1 of component A

indicates that only “admin” users can call it, and method

m2 of component B indicates that only “manager” users

can call it. Suppose m1 requests a binding to B and calls

m2. Now suppose that happens under the credentials of

user “Joe”, who is an admin, as well as a manager. In this

case, only one security context check is necessary, before

m1 is called.

This would mean that we can only deem redundant

service executions in cases when these services do not take

into account the runtime value of the context. However, in

the case of the example above, if it were known that “all

admins are managers”, the security context check at m2

could be deemed redundant. We call this kind of

information “application specific facts”.

A second problem that needs to be solved is

accommodating the fact that the same component might

participate in different binding scenarios in which different

services might be deemed redundant.

We will first describe the structure of the information

required for our solution, and then describe a system that

uses this information to optimize an application server.

2.1. Representing Runtime Information: Binding

Graphs

Binding graphs are a refinement over the runtime data

the monitoring service is producing. A binding graph

reflects the order in which bindings took place when a

system client request was handled.

A binding graph is essentially a tree. Any node has at

most one parent. One node is associated with a component.

Each node has a list of method elements. Each method

element has a list of binding elements. A binding element

contains at most one node. This structure is depicted in

Figure 1.

Component

Method

- methods
*

Binding

- component
1

- bindings *

BindingGraph

{number of methods=1}

Figure 1 binding graph structure

An example of a binding graph is depicted in Figure 2.

Nodes are illustrated as circles. An arc indicates the act of

binding.

The root node has always only one element in the

method set, as that is the method called by an external

client. In our example (Figure 2), method1 of component A

eventually initiates a binding to B and then C. The order is

not important, as both bindings happen in the context of A,

and, since we assume that the context is not modified

within a method, the contexts these bindings take place in

are identical.

Next, method1 of B initiates a binding to D. It is implied

that method1 of B was called by method1 of A, since the

binding arc ending in this node started there. Note how,

because components B and E are being bound to twice, but

in different contexts, therefore, they are being represented

for each of those cases. For any node in the graph, the

context it is bound in can be determined by identifying its

parents, then tracing down the tree the binding process.

A

method1

method1 method2

B

method1

C

D
E

B

method1

E

Figure 2 example of a binding graph

Note that a method element in a node describes the

context in which calls to the methods in a child (bounded)

node are performed. The purpose of the binding graph is to

allow for the evaluation of the context in which

components are used. For this reason, leaf nodes in a

binding tree do not contain method elements, as they

would not help evaluate anything (no further bindings).

For the same reasons, if method1 of component A called a

method “method0” on component B, which did not lead to

any further bindings, that information would not be

represented in the tree.

In the case of a component calling its own methods, two

possibilities exist: either the methods are called internally,

without application server support (and no context

management being performed), or through the application

server, with context management. The latter would require

a rebinding, which would appear in the binding graph as

such. The former does not introduce any relevant

information. Suppose method1 of C calls method2 of C

internally, which in turn requests the binding to B. That

binding still happens in the context of method1: since no

application server support was used to call method2, no

context management services are executed there.

2.1.1 Comparing Binding Graphs and Call Graphs

A call graph describes calls between various components

in a system. Binding graphs filter out only those calls that

lead to other components being bound. For this reason,

more than one call graph can correspond to a single

binding graph. Using our example in Figure 2, method1 of

component A can call some other methods on B after it

binds to it, however, that is not important for our purposes,

as they all happen within the context of method1 of A. In

fact, as it will be seen, what is optimized in this case is the

complete glue code of B, given that any method might be

called in the context of method1 of component A.

2.2. Component Framework Rules

Deployment descriptors include information describing

requirements placed on the context of execution by each

method of a component. This information is encoded as

configuration properties that affect the semantics of the

execution of a corresponding context management service.

For example, “transaction required” means that the method

will be executed in the same transactional context as the

caller, or, if that is not available, a new one will be created.

Currently, the set of possible configurations is

published as part of the EJB specification and it’s

expressed in natural language. However, we can formally

express them in a rule language, like Jess [6]. These rules

describe how the context is transformed and whether

something needs to be done to do that. For example, for

“transaction required”, the rule can indicate that, if no

transaction context is available, the transactional context

management service is to be run, and a new transactional

context will be produced. We can refer to these rules as

“component framework rules”.

An example of such a rule is given in Figure 3.

(defrule transaction_required_noCtx

 (transaction required ?method)

 (not(transactionCtx))

 =>

 (assert (transactionSvc execute ?method))

 (assert (transactionCtx))

)

Figure 3 component framework rule example

The rule is written in Jess, a rule language similar in

syntax to lisp. It describes what the “transaction required”

configuration flag in any deployment descriptor means, in

terms of executing the transaction context management

service (transactionSvc) and in terms of the state of the

context (transactionCtx). Here, the rule treats the case in

which there is no transactional context available and so

one has to be created. In order to achieve that, the

transactions context management service has to be

executed.

2.3. Context Requirements as Rule Engine Facts

Context framework rules determine a vocabulary that is

used to describe the individual context requirements each

method of a component. We will refer to such facts as

context requirement facts. The translation between the

syntax used for context requirements in deployment

descriptors, and rule engine facts, is automatic. Translators

can be reified using XSLT documents.

2.4. Application-Specific Facts

Relationships between security roles, as given in a

previous example, constitute static information pertaining

to a particular system. This information is encoded as facts,

digestible by a rule engine. In our example, “all admins are

managers” is such a fact. We will refer to these facts as

application-specific facts.

2.5. Putting It All Together

The information in binding graphs, together with

context requirement facts, describes a runtime scenario in

terms of a succession of context requirements. Such

information, together with application-specific facts, can

be fed for processing by component framework rules in a

rule-based engine. The output of the rules indicates which

context management services need to be run. In other

words, we have a mechanism for determining which

services are redundant.

3. Solution implementation

Our focus is to develop a runtime optimization solution

for application servers. It has to be easily integrated within

existent application servers (R1). Extending it to support

additional context management services should be done

with minimal effort (R2). Implicitly, it is important to

ensure that the overhead introduced by our solution does

not exceed the performance improvements it generates

(R3).

The optimization solution is able to analyze runtime

information about an EJB application and decide in which

cases context management service executions are

redundant. This decision is based on both runtime

information – binding grapsh, as well as static information

pertaining to the system installation and the EJB

framework – component framework rules, application-

specific facts, and the information contained in deployment

descriptors.

3.1. Overview

Our solution is implemented as an application server

service, and consists of: a monitoring service that extracts

runtime information from an application; a binding graph

filter which extracts binding graphs from the runtime

information produced by monitoring (Figure 4). An

optimization coordinator controls the optimization of

binding graphs by employing an expert system built on top

of a forward chaining rule engine [7], such as Jess, which

aggregates static and dynamic information and decides

which services are redundant for a particular component.

The glue code generator maps these decisions into the

application server by generating specialized glue code

variants. Finally, the call graph isolator ensures that glue

code variants are called only in the situation they were

optimized for.

Optimizations can be considered valid only for the

period of time the set of components on an application

server remains unchanged. Strategies for dealing with

changes of the component set are under investigation; a

trivial solution is to cancel all optimizations and start re-

optimizing the system.

Our system is initialized with the set of component

framework rules. Application-specific facts can be

inserted, ideally pre-runtime, either manually, or

automatically, if a facility is provided for that; however,

this is outside the scope of our research.

Figure 4 system overview

3.2. Overhead Considerations

Here we discuss aspects related to requirement R3. The

optimization of a binding graph might be resource-

consuming, but it occurs only once per graph. The

overhead produced by our solution should be minimal, as

most binding graphs should be optimized immediately

after the application is started and serving requests. The

more diverse the types of requests the server is presented

with early-on, the faster the application will be fully

optimized. Based on this observation, we can distinguish

two different utilization scenarios of our solution

(presented below). They differ in the period of time the

optimizations take place. Since the active entity (the source

of events) is the monitoring service, the differentiator

between the two scenarios is the period of time the

monitoring service is active.

3.2.1 Continuous Monitoring

In this scenario, monitoring is always active; therefore,

optimizations can happen at any time. Since any new

interaction is immediately optimized, the benefit is that all

interactions end up optimized after the first time they are

executed. The drawback is that monitoring imposes an

overhead, which might not be desirable. This scenario is

appropriate for the case in which the application under

optimization is not well known, or in which monitoring is

expected to be constantly turned on.

3.2.2 Training Period

In this case, monitoring is turned on for a period of time

called training period, after which it’s turned off.

Therefore, optimizations can occur only during the training

period. Ideally, the system would be exposed to as many

different interactions as possible during this period, to

minimize the number of un-optimized interactions left at

the end of the training period. Insight into the system

structure and behaviour is expected.

This scenario is appropriate for cases in which

monitoring would not be normally turned on, and in which

the application behaviour is well known. In such cases, it

offers the benefit of having a fully optimized system

(achievable during the training period), at no long-time

extra performance cost due to monitoring.

3.3. Monitoring Service

The monitoring service extracts runtime events from an

application, and makes them available to registered

listeners. Such a listener is the Optimization Coordinator.

The development of this service is not part of our effort,

as there are both academic [8] and commercial efforts in

this area, which we can integrate with.

3.4. Binding Graph Filter

This component is tightly coupled to the monitoring

service and processes whatever runtime information this

service produces, extracting binding graphs. The tight

coupling is due to the fact that there is no standard

monitoring facility for EJB applications, and thus, the

interface the various existing monitoring solutions offer

needs to be adapted.

3.5. Optimization Coordinator

The optimization coordinator receives for processing

one binding graph at a time from the binding graph filter. It

maintains a set of binding graphs that it had optimized.

Any binding graph is first checked against the optimized

graph set. If it is not there (un-optimized), the binding

graph is traversed depth first. It passes the context

requirements of the method at the top to the rule engine,

and then follows the first binding to the next node. Here, it

passes all the context requirements of all the methods of

the component associated with this node. At this stage, the

rule engine decides, for each such method, which context

management services are required.

The optimization coordinator invokes the glue code

generator with these facts.

Next, the requirements of the methods are retracted, and

we follow the next binding down by pushing the

requirements of the method that owns the binding. The

algorithm is presented in pseudocode in Figure 5.

Given RE, a rule engine

optimize (component c)
 for each method m in c

 push m's requirements in RE

 for each binding b in m
 c'= the component associated with b
 r=the set of requirements of the methods of c'
 push r in RE
 rc=get redundant context management executions
from rule engine, for c’
 generate glue code for c' given rc
 optimize(c')
 retract r from RE
 end

 retract m's requirements from RE

 end
end

Figure 5 optimization algorithm

Essentially, the algorithm generates a high-level

specification of the glue code associated with a

component, given a set of facts that can be known about

the runtime environment that component might be run in.

3.6. Glue Code Generation

Requirement R1 governs the design of the integration

between application server and the rule engine. There has

to be minimal coupling between the rule engine and

application server code, in particular, component glue

code. However, we need to make some assumptions.

A strategy employed by some application servers, such

as JOnAS [9], is to generate component glue code when

the component is deployed. Usually, code templates are

used, which are next run through a code generation engine,

such as Velocity [10]. We developed our solution around

the assumption that such a mechanism is being used.

The optimization coordinator has to use the information

from the rule engine in order to generate specialized

versions of glue code for each component. We opted to use

a pre-processor solution. Within the code templates used to

generate glue code, calls to context management services

are tagged. Tagging can either be done with a technology

such Velocity or XDoclet [11].

If the pre-processor is started with a set of properties,

tagged areas of code can be excluded. Essentially, the code

generation process is made aware of assumptions that can

be made about the runtime environment of the code to be

generated, which results in a customization of this code.

There has to be a mapping between facts produced by

the rule engine and tags in the code. This can be ensured,

as the “link” between these two is the set of component

framework rules, which are available at the time glue code

templates are developed.

3.7. Isolation of Call Graphs

In order to inject the optimized glue code back in the

server, a major obstacle has to be overcome: the fact that

the same component can participate in different

interactions, which in turn can yield different glue code

optimizations.

Our solution is to provide variants of glue code

simultaneously, for the same component, and provide

client components with a selection mechanism that allows

them to pick the correct variant. A glue code variant of a

component A is “correct” with respect to a client C in the

following sense: consider the binding graph B that, through

optimization, leads to the production of the glue code

variant GcV-A, for component A. Let B’ be the binding

graph associated with the call path in which C is part of. If

C has the same position (same parents) in B’ and B, and C

tries to bind to A, then GcV-A is the correct variant.

Refer to Figure 2. In that case, all external clients would

bind to A via a variant of glue code dedicated to such

clients. In this particular case, when A’s method1 is called,

the glue code installs a specialized naming provider. When

an attempt is made to bind to B, this naming provider

returns a reference to B’s glue code variant which

optimizes for the current situation (i.e. A’s method1

binding to B). This glue code variant of B installs a naming

provider when B’s method1 is called which “knows”

which version of D’s glue code to chose; similarly, for

method2 and component E.

The call graph isolator requires the modification of the

application server in order to allow for multiple glue code

variants.

3.8. Extensibility

To extend our solution to support other context

management services (R2), the component framework rule

set has to be updated, and glue code templates need to be

tagged accordingly. The ability of extending our solution is

not so much targeted at EJB applications, as more to the

migration of our solution to other frameworks, similar to

EJB, such as CCM [12].

4. Related Work

4.1. Operating Systems

Context switching optimizations were analysed in the

domain of operating systems (OS). For example, the

authors of [13] optimize thread-related context switching

overhead, by analysing liveliness information of context

elements (such as registers). In [14], the authors attempt to

avoid context switching incurred at inter-process

communication.

There are two core differences between context

switching optimizations in the OS area and our effort,

which spawn from differences in problem domains. One

lies with the entity that controls the context. In the OS

case, the context of execution of a process is represented

by a set of values (registers, stack pointer, etc) that belong

to the process in the sense that it is the one that

alters/controls them. The OS only saves and loads such

values, but does not control them. In the components case,

contexts are completely out of the scope of a component’s

control. The context is constrained outside the

component’s code, and is managed by the platform

(application server). This allows for greater opportunities

for analysis and optimization in the components case, as all

the information related to context management can be

made accessible by the platform to the agent performing

the optimization.

The other difference lies with the composition of the

context being managed. In the case of operating systems,

this composition is “a given”; it typically consists of CPU

registers. In general case we are focusing on, the

composition of the contexts is variable.

4.2. Programming Language Compilers

The area of code optimization, including redundancy

elimination, in the context of compilers, has been under

extensive research and has achieved maturity. Currently,

the vast majority of programming languages are compiled

by compilers that make use of optimizers. In the case of

interpreted languages, or languages that run over virtual

machines, as the case is for Java, the virtual machine can

provide an additional set of optimizations for a program.

Optimizations operate on information that is extracted

from code, and, sometimes, on information related to the

target platform. Typically, an intermediate representation

is produced, on which optimization algorithms are run.

The result is a modified representation, which is

functionally equivalent to the first one, but optimizes for a

particular aspect (i.e. space, time)

One requirement for redundancy elimination algorithms

is that full data flow information be available [15]. In the

case of EJB applications, this is generally impossible, as

the execution can be distributed: for example, security

checks could happen on a remote machine.

4.3. Optimization of Component Systems

The authors of [16] propose to optimize a component

system at runtime. Their approach consists of recompiling

an application built out of components, as interactions

between components become apparent. The system is

continuously evaluated and recompiled. Initial results

indicated that a continuous evaluation-recompilation cycle

is performance-detrimental.

The authors of [17] suggest that specialization scenarios

for components be packaged together with components.

The methods of specialization suggested are at the code

level.

The most important difference between these

approaches and ours is that code-level optimizations will

miss out the semantics of context management services.

We believe that our approach and the ones presented here

can be applied conjointly, but they will optimize different

aspects of the application in cause.

A number of authors propose that application servers

offer facilities that would allow applications adapt to

changes in their environment. An example is the work

presented in [18]. Enterprise services tied to an EJB

application server can be added/removed or altered. This is

similar to what we propose, in a sense, as the effect of our

optimizations is that the set of services that gets executed

at inter-component calls gets altered. The difference lies

with the scope of the alteration: in our case, it is specific to

a particular interaction scenario in which a particular

component participates, and is done in response to the

discovery of redundant context management service

executions; in [18], modifications affect all such

interactions, and are performed as response to a change in

the application environment (such as battery power or

network conditions).

JBoss [19] offers the capability of adding or removing

services provided by the application server for a

component. Similar to the approach above, this capability

has the shortcoming of affecting all interactions with that

component. This approach cannot support the case in

which the same component participates in different

execution contexts.

5. Current Status and Future Work

5.1. Optimization Study

We conducted feasibility tests for our rule engine based

optimization solution. We started by defining component

framework rules for the transaction service, and extracting

context requirements as facts from a set of components. No

application-specific facts were used at this time.

We chose the transactions service for this test as it

offers a larger array of configuration options, when

compared to security.

The experience supports the current solution. The next

immediate step is to include security rules, together with

application-specific facts.

5.2. Call Graph Isolator Implementation

We have implemented a prototype call graph isolator on

JBoss. We have used this prototype in order to gain more

insight into the design implications related to it, as well as

verify whether such a mechanism would introduce any

overhead. A full discussion of the isolator is out of the

scope of this paper. JBoss was used for this prototype

purely for previous experience reasons. Since JBoss uses a

reflective approach to glue code, it is not suited for

implementing the rest of our solution; however, it proved

sufficient for the purpose of this prototype.

5.3. Future Work

We intend to finalize a prototype optimization

coordinator and engine, together with the corresponding

set of rules for transactions and security services, as

supported by EJB.

The next step will be to analyse the proposed glue code

generation mechanism, in terms of technology used. Its

applicability across various application servers will also be

analysed. As we assume a particular glue code generation

style in-place (template-based code generation), we will

analyse glue code generation solutions for other cases -

JBoss, for example, employs a reflective approach.

6. Conclusions

We presented the problem of determining which context

management service executions are redundant for

applications built on the Enterprise Java Beans component

framework.

The proposed solution consists of aggregating static and

dynamic information and producing variants of glue code

that contain only context management service calls that are

not redundant. Static information consists of component

framework rules, context requirement facts, and

application-specific facts. Dynamic information is encoded

in binding graphs. The decision as to which service calls

are redundant is made by a rule-based engine.

Glue code variants are produced by augmenting a

currently employed method, template-based code

generation.

Glue code variants are bound to the situation they are

specialized for (i.e. a particular position in a call graph). A

method has been presented and prototyped for ensuring

that this binding is respected every time calls are passed

between components.

7. References

[1] Sun Microsystems. “Enterprise Java Beans

Specification”,

http://java.sun.com/products/ejb/docs.html#specs

[2] The Middleware Company Case Study Team. “J2EE

and .Net (Reloaded). Yet Another Performance Case

Study”. http://www.middleware-

company.com/casestudy/tmc-performance-study-jul-

2003.pdf . June 2003

[3] E. Cecchet, J. Marguerite, W. Zwaenepoel.

“Performance and scalability of EJB applications”. In

Proceedings of the 17th ACM Conference on Object-

Oriented Programming, Systems, Languages, and

Applications (OOPSLA) November 2002, Seattle,

WA

[4] Brett McLaughlin. “Building Java Enterprise

Applications Volume I: Architecture”. O’Reilly, 2002

[5] Mircea Trofin, John Murphy. “A Self-Optimizing

Container Design for Enterprise Java Beans

Applications”. The 8th International Workshop on

Component Oriented Programming (WCOP), part of

the 17th European Conference on Object-Oriented

Programming (ECOOP). July 2003, Darmstadt,

Germany.

[6] Sandia National Laboratories. Jess, the Rule Engine

for the Java™ Platform.

[7] S. Russell, P. Norvig. “Artificial Intelligence. A

Modern Approach”. Prentice-Hall, 1995

[8] Adrian Mos, John Murphy. “Performance

Management in Component-Oriented Systems using a

Model Driven Architecture Approach”. In proceedings

of The 6th IEEE International Enterprise Distributed

Object Computing Conference (EDOC), September

2002, Lausanne, Switzerland

[9] ObjectWeb. “JOnAS: Java™ Open Application

Server”. http://jonas.objectweb.org/

[10]The Apache Jakarta Project, “Velocity”.

http://jakarta.apache.org/velocity/

[11]XDoclet – Attribute Oriented Programming.

http://xdoclet.sourceforge.net/

[12]Object Management Group. “Corba Component

Model”

http://www.omg.org/technology/documents/formal/co

mponents.htm

[13]Dirk Grunwald, Richard Neves. “Whole-program

optimization for time and space efficient threads”. In

Proceedings of the seventh international conference on

Architectural support for programming languages and

operating systems, Cambridge, Massachusetts. 1996

[14]Erik Johansson, Sven-Olof Nystrom. “Profile-guided

optimization across process boundaries”. In

Proceedings of the ACM SIGPLAN workshop on

Dynamic and adaptive compilation and optimization,

2000

[15]Steven S. Muchnick. “Advanced Compiler Design

Implementation”. Morgan Kaufmann Publishers, 1997

[16]A. Gal, P.H. Fröhlich, M. Franz. “An Efficient

Execution Model for Dynamically Reconfigurable

Component Software”. In Seventh International

Workshop on Component-Oriented Programming

(WCOP 2002) of the 16th European Conference on

Object-Oriented Programming. June 2002, Malaga,

Spain

[17]Gustavo Bobeff, Jaques Noye. “Molding Components

Using Program Specialization Techniques”. In Eight

International Workshop on Component-Oriented

Programming (WCOP 2003) of the 17th European

Conference on Object-Oriented Programming. July

2003, Darmstadt, Germany

[18]Zahi Jarir, Pierre-Charles David, Thomas Ledoux.

“Dynamic Adaptability of Services in Enterprise

JavaBeans Architecture”. In Seventh International

Workshop on Component-Oriented Programming

(WCOP 2002) of the 16th European Conference on

Object-Oriented Programming. June 2002, Malaga,

Spain

[19]The JBoss Group, “JBoss Administration and

Development Documentation – eBook - 3.2.1”.

http://www.jboss.org

