
Ideas for Efficient
Hardware-Assisted Data

Breakpoints
Jonathan Cook Mayur Palankar

New Mexico State University
WODA 2004

Watching Variables

• Typical instrumentation is contol-oriented,
but watching data is often useful and
interesting

• E.g., Tcl “trace variable” command
• Historically, debuggers have been very poor

at watching data
– general locality problem is hard
– so just break after “every” instruction
– e.g., 10,400 slowdown on a simple program

Specialized CPU Hardware

• i386+ has four breakpoint registers (other
popular CPUs have one)

• Each will watch one word of memory at
CPU speeds

• Enables limited data breakpoints with no
slowdown -- unless breakpoint occurs

• Used only naively so far, by debuggers

Using BP Registers for DA/RM

• Why not use these four registers for many
other dynamic analysis/runtime monitoring
purposes?

• To consider this, we must not be limited by
the number of registers

• How to watch 100 variables with just four
registers?

Overall Process
Program
Source Static Analysis

Watched
Variables

Dynamic Analysis

BP Reg
Schedule

Desired
Output

Scheduling BP Registers

• Given: program, set of variables to watch
• Produce: schedule of BP register usage
• Simple variables only – easy
• Arrays, pointers make everything hard
• When to change schedule?

Ideas

• Static analysis informs/creates schedule
• Hierarchy of points at which to change

schedule
– BP triggers themselves (def-def chains?)
– function call/returns (scoping)
– basic block entry/exit (scoping)

• Points to analysis to handle pointers
• Backpedal to high coverage but < 100%

Why this will succeed

• Data watching is useful, and has been hard
to support

• It’s a shame not to use hardware support if it
is available

• Points-to analyses show few offending
pointers

• May enable other interesting ideas
– data-based joinpoints for AOP?
– security-oriented monitoring

Why this will fail

• Context switching!
– BP registers trigger kernel-level trap
– programming support only allows parent

process to catch the trap
• Previous work (Wahbe et al., 1993 PLDI) set

a high bar using direct instrumentation
• Maybe not as high a need for data watching

as we think?

	Ideas for Efficient Hardware-Assisted Data Breakpoints
	Watching Variables
	Specialized CPU Hardware
	Using BP Registers for DA/RM
	Overall Process
	Scheduling BP Registers
	Ideas
	Why this will succeed
	Why this will fail

