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Abstract

A variety of functionally important protein properties, such as secondary structure, transmembrane topology and solvent
accessibility, can be encoded as a labeling of amino acids. Indeed, the prediction of such properties from the primary amino
acid sequence is one of the core projects of computational biology. Accordingly, a panoply of approaches have been
developed for predicting such properties; however, most such approaches focus on solving a single task at a time.
Motivated by recent, successful work in natural language processing, we propose to use multitask learning to train a single,
joint model that exploits the dependencies among these various labeling tasks. We describe a deep neural network
architecture that, given a protein sequence, outputs a host of predicted local properties, including secondary structure,
solvent accessibility, transmembrane topology, signal peptides and DNA-binding residues. The network is trained jointly on
all these tasks in a supervised fashion, augmented with a novel form of semi-supervised learning in which the model is
trained to distinguish between local patterns from natural and synthetic protein sequences. The task-independent
architecture of the network obviates the need for task-specific feature engineering. We demonstrate that, for all of the tasks
that we considered, our approach leads to statistically significant improvements in performance, relative to a single task
neural network approach, and that the resulting model achieves state-of-the-art performance.
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Introduction

Proteins participate in every major biological process within
every living cell. Therefore, elucidating protein function is a
central endeavor of molecular biology. In this work, we focus on
predicting local functional properties, which can be summarized as
a labeling of amino acids. Many important functional properties
can be described in this fashion, including secondary structure,
solvent accessibility, transmembrane topology and the locations of
signal peptides, DNA-binding residues, protein-binding residues
and coiled-coil regions.

Our work is motivated, in part, by recent, successful work in the
field of natural language processing [1]. Analogous to functional
labeling of amino acids, natural language can be annotated with
tags indicating synonymous pairs of words, parts of speech, larger
syntactic entities, named entities, semantic roles, etc. These
labelings exhibit strong dependencies across tasks. Accordingly,
Collobert and Weston [1] demonstrated that a unified neural
network architecture, trained simultaneously on a collection of
related tasks, provides more accurate labelings than a network
trained only on a single task. Their study thus demonstrates the
power of multitask learning, which has been the subject of much
recent work in machine learning [2]. Furthermore, essential to the

success of the Collobert and Weston system is the use of a deep
neural network [3,4], which is able to learn a hierarchy of features
that are relevant to the tasks at hand given very basic inputs. The
deep network employs different layers to represent cross-task and
task-specific information. Thus, the deep multitask architecture
makes it possible to avoid the challenging process of incorporating
hand-engineered features specific to each task. Finally, a critical
piece of the Collobert and Weston methodology is the use of a so-
called language modeling task [1], in which the network learns to
discriminate between genuine natural language sentences and
synthetically generated sentences. Our work makes use of all three
of these components–multitask learning, deep learning and an
analog of the language model–to predict local protein properties.

Currently, most approaches to predict local protein properties
focus on one task at a time. Perhaps the most well-studied such
problems are the canonical secondary structure prediction
problem [5] and the related task of predicting transmembrane
protein topology [6]. Other tasks include identifying signal
peptides, predicting DNA-binding residues, identifying coiled-coil
regions, predicting relative or absolute solvent accessibility, etc.
However, like the natural language processing tasks mentioned
above, all of these protein labeling tasks exhibit strong inter-task
dependencies. For example, transmembrane protein topology and
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secondary structure prediction are closely linked, because most
transmembrane protein segments are alpha helices. Similarly,
signal peptide prediction can be viewed as prediction of a
particular type of transmembrane segment. DNA-binding and
protein-binding residues may also share similar structural features,
since both must be exposed on the surface of the protein. Some
work makes use of these dependencies in a pipelined fashion; for
example, [7] use secondary structure and solvent accessibility
predictions as input to a DNA-binding residue predictor. A
drawback to the pipelining approach is that errors from one
classifier get propagated to downstream classifiers [8]. A more
elegant and robust approach is to use only the primary amino acid
inputs, combine the prediction problems, and learn the tasks
simultaneously using multitask learning. This strategy also avoids
extracting task-specific sets of features.

In this work, we define a unified architecture for prediction of
local protein properties by training a deep neural network in a
multitask fashion. Specifically, our network learns simultaneously
to predict solvent accessibility, transmembrane topology and two
secondary structure alphabets, and to identify DNA-binding
residues, protein-binding residues, signal peptides and coiled-coil
regions. We also include a semi-supervised learning task, which we
call natural protein modeling, to learn features representing local
amino acid patterns in naturally occurring protein sequences. We
evaluate this architecture using benchmark datasets for each task.
The results show that multitask learning improves performance on
nearly every task, and adding the semi-supervised natural task
helps in nearly every case. Furthermore, adding both multitask
learning and the natural protein task makes our architecture
achieve state-of-art performance on almost all tasks.

Methods

Prediction tasks
A variety of local protein properties can be represented as

predicting labels of amino acids. In this work, we predict ten such
labelings, each of which is described below.

Secondary structure. A protein’s secondary structure is a useful
intermediate between the relatively easy-to-ascertain primary
amino acid sequence and the difficult-to-obtain three-
dimensional structure. The secondary structure specifies the
general three-dimensional form of local segments of a protein.
The most commonly observed local structures are a-helices, b-
sheets and loops. In the secondary structure prediction task we aim
to predict each residue’s secondary structure label. Knowing a
protein’s secondary structure may yield insight into the protein’s
functional class, suggest boundaries between domains, or aid in
inferring the protein’s 3D structure.

Since the advent of the first automated secondary structure
prediction method 22 years ago [5], dozens of subsequent methods
have been described in the scientific literature. These include
methods that employ neural networks [5,9–13] and probability
models such as hidden Markov models [14] and dynamic Bayesian
networks [15].

Our multitask learning data set includes three protein secondary
structure prediction tasks. The first is a standard benchmark,
CB513 [16], consisting of 513 unrelated proteins with known 3D
structure. To create the other two secondary structure prediction
tasks, we used 11 795 chains from the DSSP [17]. We considered
two variants of the secondary structure prediction task, one task
using the full 8-letter alphabet and one task using the reduced, 3-
letter alphabet.

From the CB513 benchmark we eliminated 16 proteins because
they were shorter than 30 amino acids. The CB513 data is labeled

with the 8-letter DSSP alphabet (H = alpha helix, B = residue in
isolated beta bridge, E = extended strand, G = 3-helix, I = 5-helix,
T = hydrogen bonded turn, S = bend, L = loop) [17]; however, for
comparison with other methods that use this benchmark, we
reduce the 8-letter alphabet to a 3-letter alphabet in the standard
way [9]: fH,Gg?H, fB,Eg?B, and fI ,S,T ,Lg?C~Coil.

To create the other two secondary structure prediction tasks, we
used the DSSP, downloaded on Feb 1, 2008. After removing short
sequences and sequences comprised primarily of Xs, and after
filtering so that no pair of sequences shares w40% sequence
identity, we were left with 11 795 protein chains. We considered
two variants of the secondary structure prediction task, one task
using the full 8-letter alphabet and one task using the reduced, 3-
letter alphabet.

Note that we cite the best previously reported accuracy (i.e., the
highest percentage of correct predictions) on CB513 as 80.0%
[18]. There is actually a recently published paper that reports
80.49% accuracy [19]; however, in corresponding with the
authors of that paper, we learned that this value is not based on
a cross-validated test.

Transmembrane topology and signal peptide
prediction. Complementary to prediction of protein secondary
structure is the prediction of transmembrane topology. The most
common type of transmembrane protein consists of a series of a-
helices that span the membrane, interleaved with loops that extend
out of the membrane. The labeling task consists of identifying these
membrane-spanning segments and then specifying whether each
loop is inside or outside of the membrane; hence, transmembrane
predictors employ a three-letter alphabet.

Transmembrane proteins are of particular interest for two
reasons. First, because transmembrane proteins cannot be crystal-
lized (due to the presence of the membrane), their 3D structure
cannot be easily determined. Second, because of their importance in
communicating across membranes, more than half of all drug
targets are transmembrane proteins, even though only an estimated
18–26% of all proteins are transmembrane proteins [20–22].

A closely related task to the prediction of transmembrane
protein topology is the prediction of signal peptides, which are
short (3–60 amino acids) peptides that direct newly translated
proteins to their final destinations in the cell. Early methods
predicted signal peptides [23,24] and transmembrane protein
topology separately [6]. More recent work suggests that the two
tasks can be solved more effectively using a joint predictor [25,26].

For the signal peptide and transmembrane topology prediction
tasks, we use data from three sources. First, we use 1087 globular
proteins described in [25]. These proteins are all labeled
completely with ‘‘O’s’’, corresponding to outside (non-cytoplasmic)
loops. Second, we combined the transmembrane proteins from
[25] and [27], resulting in a nonredundant set of 46 membrane
proteins with signal peptides and 324 membrane proteins without
signal peptides. These proteins are labeled with a five-letter
alphabet: S = signal peptide, O = outside loop, I = inside loop,
M = membrane-spanning alpha helix and R = re-entrant region.
Some residues are unlabeled (indicated with ‘‘.’’). Third, we use
1729 signal peptide proteins from [28]. In each of these proteins,
the signal peptide is labeled ‘‘S’’, and the rest is unlabeled (We use
‘‘N’’ to indicate non-signal peptide regions). Using these three data
sets, we consider two tasks: the full, five-letter SP+TM topology
prediction task on the first two data sets, as well as the three-letter
signal peptide detection task using the first and third data sets.

For validation on both tasks, we use the 10-fold cross-validation
splits from [26]. For the transmembrane topology problem, a
predicted transmembrane segment is deemed correct if it overlaps
a true transmembrane segment by at least five amino acids,
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whereas inside, outside and signal peptide predicted segments
require only a single amino acid overlap. The figure of merit is the
segment level metric for the transmembrane prediction task,
including both sensitivity and precision. This metric is only
computed with respect to the 324 TM or 46 TM+SP proteins in
the data. For signal peptide prediction, the figure of merit is
protein level accuracy, where a protein is deemed to have a
predicted signal peptide if any residue therein is assigned the label
‘‘S.’’

Solvent accessibility. The solvent accessibility prediction
task involves distinguishing between amino acids that are
accessible to water versus amino acids that are buried inside the
protein. Hence, the task involves a two-letter alphabet. Defining
this alphabet requires setting a threshold, which can be done either
on an absolute scale or relative to the protein in which the amino
acid resides.

Early methods for solvent accessibility prediction used neural
networks [10,29,30] or support vector machines [31]. [32] showed
that a simple baseline predictor performs rather well relative to
more sophisticated methods, and [33] made a consensus predictor
by combining predictions from three different methods.

We used the DSSP to define two solvent accessibility data sets.
The DSSP reports the solvent accessibility of each amino acid on
an absolute scale (surface area accessible to water in units of s2).
Therefore, we first defined a binary alphabet using a threshold of
15. Second, we computed the relative accessibility of each amino
acid by dividing each accessibility value by the per-protein
maximum, and we defined a second binary labeling using a
threshold of 0.15 [34]. We computed these two labelings across the
same collection of 11 795 sequences that were used for the
secondary structure task.

Coiled coil regions. A coiled coil is a protein structural
motif, in which a-helices are coiled together like the strands of a
rope. Coiled coils usually contain a repeated pattern, hpphppp, of
hydrophobic (h) and polar (p) amino-acid residues, referred to as a
heptad repeat. The positions in the heptad repeat are usually
labeled abcdefg, where a and d are the hydrophobic positions,
often being occupied by isoleucine, leucine or valine. Folding a
sequence with this repeating pattern into an alpha-helical
secondary structure causes the hydrophobic residues to be
presented as a ‘‘stripe’’ that coils gently around the helix in left-
handed fashion, forming an amphipathic structure. Coiled coil
domains function in the stabilization of tertriary and quaternary
structure of proteins. Many coiled coil proteins are involved in
protein-protein interactions and have important biological
functions, such as protein trafficking, signalling and regulation of
gene expression.

The first method for predicting coiled coil regions used position
specific scoring matrices to score sequence windows [35].
Subsequent methods achieved improved accuracy by including
correlations among residues [36–38] or by using hidden Markov
models [39]. Currently, the best performing coiled coil predictor is
an HMM that uses evolutionary information [40].

For the coiled coil prediction task, we downloaded a dataset
used in the training of the Paircoil [38] algorithm from the PPT-
DB [41] database server. The data set contains 776 proteins. In
each of these proteins, consecutive 7-residue stretches in the coiled
coil region are labeled with the sequence ‘‘abcdefg’’. The most
frequent label, at 69.8%, is ‘‘N’’, the label for non-coiled residues.
Each of the other labels has a frequency of about 4.3%.

We evaluate the performance of our method by using the ten-
fold cross-validation, as in the PPT-DB [41] database server. We
evaluate this task using both the amino acid level accuracy and the
‘‘Percent correct’’ metric proposed in [41]. The latter is computed

as the percentage of matching structure regions where matches are
any aligned coiled-coil segments (e.g. ‘‘a’’ matches ‘‘c’’), and ‘‘N’’
matching ‘‘N’’; otherwise, a mismatch is counted.

DNA binding. The final two prediction tasks involve
identifying amino acids that interact with, respectively, DNA
molecules or other proteins. Detection of DNA-binding sites in
proteins is critical for targeting gene regulation and manipulation.
Thousands of proteins are known to bind to DNA; however, for
most of these proteins the mechanism of action and the residues
that bind to DNA, i.e. the binding sites, are not known.
Experimental identification of binding sites requires expensive
and laborious methods such as mutagenesis and binding assays. If
the 3D structure of a protein is known, then it is often possible to
predict DNA-binding sites in silico. However, for most proteins,
such knowledge is not available.

Several methods have been developed to predict DNA-binding
residues from the primary amino acid sequence. [42] described
predictors based on sequence composition and predicted solvent
accessibility. Later, some of the same authors [43] used profiles of
homologous proteins to achieve more accurate prediction of DNA-
binding sites. More recently, [7] used three types of inputs–PSI-
BLAST profiles, predicted secondary structure, and predicted
solvent accessibility–to train a support vector machine DNA-
binding predictor.

For the prediction of DNA binding residues, we use a data set of
DNA/protein structures collected by [7]. The set contains 693
DNA-binding protein sequences with an average length of 183
amino acids. Residues are considered DNA-binding if they are
v6 Å from the DNA molecule. The label alphabet consists of two
characters (B = binding, N = not binding), and 18.8% of the amino
acids in this set are labeled ‘‘B.’’

To evaluate performance on this data set, we use a clustering of
the protein chains such that no inter-cluster pairs are too similar.
This is the same clustering that was used by [7]. Their HSSP
threshold of zero [44,45] corresponds to 20% pairwise sequence
identity. We then perform three-fold cross-validation on the
clusters, i.e., we randomly divide the set of clusters into three
equal-sized portions, and we repeatedly train on two-thirds and
test on the remaining one-third of the data.

Protein binding residues. The protein-binding prediction
task is analogous to the prediction of DNA-binding residues, but
focused on binding sites for protein-protein interactions rather
than protein-DNA interactions. Identifying these sites from the
primary amino acid sequence is critical to understanding protein
function, because so many proteins carry out their functions as
part of multi-protein complexes.

Several studies attempted to address the sequence-based
interaction site prediction problem. Pazos et al. [46] use multiple
sequence alignment to detect correlated changes in a group of
interacting protein domains for predicting contacting pairs of
protein residues. Gallet et al. [47] analyze hydrophobicity patterns
and amino acid distributions in known interaction sites to identify
linear stretches of sequences. Yan et al. [48] apply support vector
machines to predict protein binding sites with features extracted
from sequence neighbors for each target residue. Liang et al. [49]
predict interface residues using an empirical score function that is
a linear combination of the energy score, interface propensity and
residue conservation score. And Ofran et al. [50] employ a neural
network approach using PSI-BLAST profile features to identify
interaction sites directly from sequences.

For the prediction of protein binding residues, we use a data set
obtained from [50]. The authors used non-redundant subsets from
PDB, focusing on transient interactions between two non-identical
chains of two different proteins. This approach yielded 1133
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proteins. A residue was defined to be in a protein-protein
interaction if any of its atoms was v6 Å from any atom in the
other protein. The three-fold cross validation splits were also
obtained from [50], where sequence-unique subsets were built for
all types of proteins under consideration.

Deep neural network for each task
We introduce a deep neural network architecture for protein

labeling tasks. The input sequence is fed through several layers of
feature extraction, and features relevant to the task are learned
automatically by backpropagation in deep layers of the network.
The general deep network architecture, which is suitable for all
our prediction tasks, is summarized in Figure 1. The network is
characterized by two specialized layers–an amino acid feature
extraction layer and a sequential feature extraction layer–followed
by a series of classical neural network layers.

Amino acid feature extraction. The first layer extracts
features for each amino acid by mapping amino acids to real-

valued vectors. We use two distinct types of features–a learned
embedding into a d-dimensional feature space, and a 20-
dimensional feature representation produced by PSI-BLAST
[51]–which are concatenated to produce the output of the layer.

The first feature extraction module projects each amino acid
into a d-dimensional feature space, where d is a hyperparameter;
i.e., d is not subject to optimization. Within a finite amino acid
dictionary D, each amino acid si[D is embedded into the feature
space using a d|DDD lookup table W , such that Wsi

, the column
vector of W at the index of si, is the vector corresponding to
amino acid si. Thus, in the first layer of our architecture an input
sequence fs1,s2, . . . sng is transformed into a series of real valued
vectors fWs1

,Ws2
, . . . Wsn

g. The parameters of the lookup table
W are learned automatically as part of the neural network
training. This type of feature extraction–called a ‘‘local encoding
of amino acids’’–was originally proposed by Riis et al. [52]. The
encoding weights W are randomly initialized with a centered,
uniform distribution [53] and then learned by back-propagation.
The resulting encoding is optimal in the sense that it optimizes the
objective cost on the training set for the specific network and the
specific task.

The second feature extraction module in the first layer extracts
information from an alignment of homologous proteins identified
by the PSI-BLAST algorithm. Each length-M query sequence is
searched using PSI-BLAST against the NCBI nonredundant
protein sequence database, yielding a 20|M position-specific
scoring matrix. Note that PSI-BLAST will create a PSSM even
when no homologs are present. In this case, each column is simply
a value from the specified BLOSUM matrix. Each element in the
matrix represents the log-likelihood of a particular residue
substitution at that position in the template. The profile matrix
elements (typically in the range ½{7,7") are scaled to the required
range ½0,1" by using the following scaling function [54]:

f (x)~

0:0 if xƒ{5

0:5z0:1x if {5vxv5

1:0 if x§5

8
><

>:
ð1Þ

where x is the value from profile matrix. Each column of the
rescaled matrix comprises a 20-dimensional PSI-BLAST feature
vector for the corresponding amino acid.

Sequential feature extraction layer. To facilitate
identification of local sequence structure, the second layer
performs a sliding window operation on the sequence. As
illustrated in Figure 1, the second layer aggregates the output of
the first layer into blocks corresponding to a fixed window size k.
Figure 1 shows an example using a window size of k~7, so each
block contains information about the current amino acid as well as
the three flanking amino acids on either side. Altogether, because
the output of the first layer has dz20 dimensions, the output of
the second layer has k(dz20) dimensions.

Classical neural network layers. The remaining layers
comprise a standard, fully connected multi-layer perceptron
network with L layers of hidden units. Each hidden layer learns
to map its input to a hidden feature space, and the last output layer
then learns the mapping from the hidden space to the output class
label space. In Figure 1, the sequential feature extraction layer
induces a large effective feature space, where examples correspond
to each possible length-k sequence of amino acids. Thus, the job of
the hidden layers is to map this high dimensional input space to a
lower dimensional feature space and then to look for hyperplanes
that separate examples with different amino acid labels in the
output layer.

Figure 1. Deep neural network architecture. Given an input amino
acid sequence, the neural network outputs a posterior distribution over
the class labels for that amino acid. This general deep network
architecture is suitable for all of our prediction tasks. The network is
characterized by three parts: (1) an amino acid feature extraction layer,
(2) a sequential feature extraction layer, and (3) a series of classical
neural network layers. The first layer consists a PSI-BLAST feature
module and an amino acid embedding module. With a sliding window
input fs1,s2, . . . skg (here k~7), the amino acid embedding module
outputs a series of real valued vectors fWs1

,Ws2
, . . . Wsk

g. Similarly, the
PSI-BLAST module derives k 20-dimensional PSI-BLAST feature vectors
corresponding to the k amino acids. These vectors are then
concatenated in the sequential extraction layer of the network. Finally,
the derived vector is fed into the classical neural network layers. The
final softmax layer allows us to interpret the outputs as probabilities for
each class.
doi:10.1371/journal.pone.0032235.g001
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In practice, the output of the ‘th layer o‘, which contains h‘
hidden units, is computed with

o‘‘~h(L‘‘:o‘‘{{1) ð2Þ

where the matrix of parameters L‘‘[Rh‘|h‘{1 is trained by
backpropagation. The transfer function h(:) is defined as:

h(x)~Hard Tanh(x)~

{1 if xv{1

x if {1ƒxƒ1

1 if xw1

8
><

>:
: ð3Þ

The size of the last (parametric linear) layer’s output oL is the
number of classes considered in the prediction task. This layer is
followed by a softmax layer which ensures that the outputs are
positive and sum to 1, allowing us to interpret the outputs of the

neural network as probabilities for each class. The ith output is
given by

~PPi~
expfoL

i gP
j

expfoL
j g

ð4Þ

In this work, for simplicity, we restrict the classical part of our
neural network to one single hidden linear layer and one output
linear layer.

Assuming that we are given a set of training examples
f(xn,yn)gn~1:::N , where xn represents a local short window of amino
acids and yn a label, the whole network is then trained to minimize
the negative log-likelihood, i.e. E(H)~

PN
n~1 E(H,xn,yn) over the

data with respect to H: all parameters of the network. Specifically,

E(H)~{
XN

n~1

logPh(ynDxn)~{
XN

n~1

log~PPh,yn (xn) ð5Þ

Stochastic gradient descent optimization is used for the above
training. Random examples (x,y) are sampled from the training set
and then a gradient descent step is applied to update network
parameter H as follows:

H/H{g
LE(H,x,y)

LH
ð6Þ

where g is a learning rate parameter.

Multitasking with weight sharing of deep neural
networks

The neural network architecture displayed in Figure 1 can be
adapted in various ways to perform multitask learning. In this
work, we used the multitask architecture shown in Figure 2, in
which the top-most layers of the network are shared across
multiple tasks, and only the very last layers of the network are task
specific.

Assuming we have T related tasks, the ‘‘weight sharing’’ strategy
implies that the parameters for the top-most layers of the network
are shared between tasks; i.e., the network includes parameters

Ht~fW ,L1,L2,:::,LL{{1,LL
t g ð7Þ

for each task t. With this setup–i.e., only the last layer LL
t is task-

specific–the neural network automatically learns an embedding

that generalizes across tasks in the first layers of the network, and
learns features specific for the desired tasks in the deep layers of the
network.

Training in the multitask setting is accomplished by minimizing
an objective function that is the sum of the objectives from each
task, where each task is given equal weight. That is, we optimize:

XT

t~1

XNt

nt~1

Et(Ht,xnt ,ynt ) ð8Þ

assuming each task has a training set f(xnt ,ynt )gnt~1:::Nt
. The tasks

share a common feature input, and the weight sharing among Ht

makes the optimization of different tasks dependent. When
training by stochastic gradient descent, this amounts to interleav-
ing the stochastic updates for each of the related tasks. That is, the
procedure iteratively carries out the following three steps:

1. select a task at random,

2. select a random training example for this task, and

3. compute the gradients of the neural network attributed to this
task with respect to this example and update the parameters.

Because some of the parameters are shared between the tasks, the
tasks influence each other during training. The training procedure
continues until the per-residue error becomes stable–i.e., error
decreases by less than 0.00005–on a held-out validation set (one fifth
of each training set was held out for this purpose) or reaches a
specified maximum number of iterations. In practice, we found that
100–150 iterations are sufficient for the networks trained here.

It is worth noting that labeled data for training each task can
come from completely different data sets. However, when the sizes
of the training sets for the different tasks are very different, then
the above procedure does not work well because the network does
not train enough on the ‘‘larger’’ tasks. To address this problem,
we employ a pre-training strategy, where the larger tasks (i.e. four
large task including ‘‘ss’’, ‘‘dssp’’, ‘‘saa’’ and ‘‘sar’’ in Table 1) are
trained jointly prior to multitasking of all tasks. This pre-training

Figure 2. Multitask learning with weight sharing between
multiple deep neural networks. In this figure, two related tasks are
trained simultaneously using the network the architecture from Figure 1.
Here only the very last layers of the network are task specific.
doi:10.1371/journal.pone.0032235.g002
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procedure ensures that the large tasks reach a stable area of the
parameter space before the full multitasking, which involves all
tasks. As pointed out by [55], the pre-training guides provide a
regularization effect.

The natural protein task: feature learning with unlabeled
protein sequences

Labeling a data set can be expensive, especially when doing so
requires expensive and time-consuming laboratory experiments.
Consequently, the ability to leverage unlabeled data to improve a
predictive model is a compelling goal. We now present a semi-
supervised task to model the local patterns of amino acid contexts
that occur in natural protein sequences.

This ‘‘natural protein’’ task is motivated by results from the
natural language processing community. In that context, research-
ers noticed that for part-of-speech or other semantic tagging tasks,
words that are semantically similar can often be exchanged with
no impact on the labeling. For example, in a sentence like ‘‘the cat
sat on the mat’’ one can replace ‘‘cat’’ with nouns such as ‘‘dog’’,
‘‘man’’ or ‘‘patient’’ with no change in the part-of-speech tagging.
Collobert and Weston [1] therefore included in their multitask
learning system a task that forces two sentences with the same
semantic labels to have similar representations in the shared layers
of neural network, and vice versa. Training for this task is achieved
by assigning a positive label to genuine fragments of natural
language, and negative labels to fragments that have been
synthetically generated. Essentially, this task involves learning to
predict whether the given text sequence exists naturally in the
English languague.

Motivated by this language model, we propose an auxiliary task
aiming to model the local patterns of amino acids that naturally
occur in protein sequences. This is achieved by learning to predict
whether the given protein segment exists in real protein sequences.
Accordingly, all length-k windows from SwissProt version 54.7 are
labeled as positive examples, and negative fragments are generated
by randomly substituting the middle amino acid in each window.
Because the training set for this task is extremely large, we train the
natural protein modelling task separately from the other tasks.
Also, the network architecture used in this task is slightly different
from that shown in Figure 1; here we do not use the PSI-BLAST

feature encodings (see Figure 3). Other components of the network
are the same and explained in the previous sections. As for the
other tasks, the amino acid embeddings and the parameters of the
subsequent neural network layers are all automatically trained by
backpropagation. The difference is that here the model is trained
with a ranking-type cost (with margin):

Table 1. Summary of data sets.

Name Task Prot Num AA Num CV Composition (%)

ss Secondary structure 11 765 2 518 596 5 41.7 = C, 21.6 = E, 36.7 = H

cb513ss Secondary structure 497 83 707 7 42.8 = C, 22.7 = E, 34.5 = H

dssp Secondary structure, DSSP 11 765 2 518 596 5 33.3 = H,20.4 = E, 20.1 = L,

11.2 = T, 9.5 = S, 3.5 = G, 1.1 = B, 0.02 = I

sar Relative solvent accessibility 11 765 2 518 596 5 51.1 = B, 48.9 = A

saa Absolute solvent accessibility 11 795 2 518 596 5 64.9 = B, 35.1 = A

dna DNA binding 693 127 064 3 81.2 = N, 18.8 = B

sp Signal peptide 2816 1 058 598 10 30.8 = O, 4.0 = S, 65.2 = N

tm Transmembrane topology 1457 460 780 10 82.1 = O, 9.6 = I, 7.5 = M,

0.3 = S, 0.1 = R, 0.4 = N

cc Coiled coil 765 444 138 10 69.8 = N, 4.3 = each of a/b/c/d/e/f/g

ppi Protein protein interaction 1129 188 676 3 73.4 = P 26.6 = N

For each data set, we list the number of protein sequences, the number of amino acids, the number of cross validation folds, and the proportion of amino acids
assigned to each label.
doi:10.1371/journal.pone.0032235.t001

Figure 3. Network architecture for training the ‘‘natural
protein’’ auxiliary task. The ‘‘natural protein’’ auxiliary task aiming
to model the local patterns of amino acids that naturally occur in
protein sequences. Using local windows in the unlabeled protein
sequences as positive examples and randomly modified windows as
negative examples, the network learns the feature representations for
each amino acid. In contrast to the network illustrated in Figure 1, the
network contains only the amino acid embedding module in the first
layer of the network. The learned embedding is encoded into the real
valued parameter matrix of the amino acid feature extraction layer.
doi:10.1371/journal.pone.0032235.g003
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where S is the set of windows of amino acid segments, D is the
vocabulary of amino acids, f (:) represents the output of the
neural network architecture, and sa is a window where the middle
amino acid has been replaced by a random amino acid a.
Essentially, we are learning the network weights to rank positive
protein segments above synthetic segments. The training is
carried out using stochastic gradient descent, which samples the
cost online with respect to (s,a). As in the natural language
setting, the end goal for this training procedure is not the solution
to the classification task itself, but the embedding of amino acids
into a semantically meaningful, d-dimensional space. The real-
valued vectors representing the amino acids comprise the
columns of the lookup table W in the amino acid feature
extraction layer of the network. Thus, to combine the natural
protein task with other tasks, we initialize the amino acid
embedding lookup table W in the feature extraction layer
(Figure 1) with the embedding weights learned during training of
the natural protein task.

The natural protein modeling task aims to learn features
representing local amino acid patterns in naturally occurring
protein sequences. Conserved in natural protein sequences, these
patterns are different from patterns in random sequences
constructed from amino acid letters. This task is closely related
to the ‘‘language model’’ in natural language processing, whereby
language modeling aims to learn the joint probability function of
sequences of words. The auxiliary task used to identify these
patterns is essentially a pseudo-classification task which needs both
‘‘real’’ protein segments and ‘‘unreal’’ segments of amino acids.
The synthetic negative set provides the negative segments required
for this classification task.

Results

Data Sets
The collection of data sets tested in this paper is summarized in

Table 1 and is publicly available at http://noble.gs.washington.
edu/proj/multitask, along with software implementing our multi-
task learning strategy. The software and methods were imple-
mented using the Torch5 (http://torch5.sourceforge.net/) ma-
chine learning library. Torch is implemented in C, and the
scripting for this project was carried out in the Lua (http://www.
lua.org) scripting language. The data set includes three protein
secondary structure prediction tasks. The first is a standard
benchmark, CB513 [16], consisting of 513 unrelated proteins with
known 3D structure. To create the other two secondary structure
prediction tasks, we used 11 795 chains from the DSSP database
[17] downloaded on February 1, 2008. We also considered two
variants of the secondary structure prediction task, one task using
the full 8-letter alphabet and one task using the reduced, 3-letter
alphabet. For the signal peptide (SP) and transmembrane (TM)
topology prediction tasks, we define two tasks: a five-letter SP+TM
topology prediction task, as well as a signal peptide detection task.
We used the DSSP to define two solvent accessibility data sets,
absolute accessibility and relative accessibility, in which the
accessibility is scaled relative to the maximum per-protein
accessibility. For the coiled coil prediction task, we use a previously
described data set containing 776 proteins [38]. For the prediction
of DNA binding residues, we use a data set from [7], consisting of
693 DNA-binding proteins.

Experimental Setup
This work is predicated on a three-fold hypothesis, namely, that

we can improve our ability to predict various protein labeling tasks
by (1) learning an amino acid embedding, (2) using multitask
learning and (3) including the ‘‘natural protein’’ task in our
multitask learning. Accordingly, we systematically tested variants
of our learning approach, with the goal of testing each of these
hypotheses.

To evaluate the performance of a given predictor, we primarily
focus on accuracy evaluated at the amino acid level, sometimes
referred to as the ‘‘Q-score.’’ For a multiclass classifier, when we
compare a predicted labeling with a true labeling of a set of
proteins, each amino acid falls into one of the two categories:
either the predicted label and the true label agree and the amino
acid is ‘‘correct’’ or the predicted label and the true label disagree
and the amino acid is ‘‘incorrect.’’ Accuracy is defined as the
percentage of amino acids whose labels are predicted correctly;
i.e.,

Accuracy~
# correct

(# correct)z(# incorrect)

Considering the multiclass nature of the selected tasks, we also
compute the precision, recall and F1 metrics separately for each
class, where we treat the selected class as the positive class and all
of the other classes as negatives. This essentially treats each
multiclass task as separate binary classification tasks and computes
separate metrics for each one. Precision for a certain class refers to
the number of true positives (TP) (i.e. the number of amino acids
correctly labeled as the specific class) divided by the total number
of amino acids labeled as belonging to the class (i.e. the sum of true
positives (TP) and false positives (FP)).

Precision~
TP

TPzFP

‘‘Recall’’ for a certain class is defined as the number of true
positives (TP) divided by the total number of amino acids that
actually belong to the class (i.e. the sum of true positives (TP) and
false negatives (FN)).

Recall~
TP

TPzFN

Precision and recall can be usefully combined into a single
measure such as F1, defined as

F1~
2 % Precision % Recall

PrecisionzRecall

Accordingly, Table S1 summarizes the results from this
calculation.

In addition, we also report the protein-level accuracy for the
‘‘sp’’ task, segment-level accuracy for the ‘‘tm’’ task, and segment-
level accuracy for the ‘‘cc’’ task. These additional metrics allow us
to compare our results to those of previously published methods.

Our learning framework requires the specification of a variety of
hyperparameters. These include the size k of the sequence window,
the size h of the hidden layer, and the learning rate g. We considered
k[f7,11,13,15g, h[f60,75,85,100,120g, and g[f0:001,0:003,
0:005,0:01,0:03g. For the size of the embedding vector d in the
general embedding layer case or in the natural protein task, we tried
f10,15,25g. For the natural protein task, the unlabeled corpus was
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split into one training (70%) and one validation set. The best
parameters found for the natural protein task were k~13, h~100
and d~15. For the other tasks when training separately, we
optimized each task’s performance through a grid search of
parameter combinations. When training jointly on multiple tasks, a
grid search on parameters was also performed for the performance
optimization (on average). In general, the learning rate g does not
vary much across different tasks: for instance, the best learning rates
for the tasks dssp, ssp, sar, saa, cc, sp, dna (using the abbreviations
from Table 1) are all roughly 0.005. The window size k~13 and the
embedding size d~15 gave overall best results. Not surprisingly, the
optimal number of hidden units differs depending on the inputs. For
instance, when using only the PSI-BLAST feature representation for
amino acids, h~75 roughly performs the best for all tasks. After
adding the amino acid embedding to the feature extraction layer,
h~85 works better. Then, when training a joint model for
multitasking several tasks, we found that h~120 gives good
performance overall.

A learned amino acid embedding
We begin by evaluating the utility of including an amino acid

embedding into the amino acid feature extraction layer of the
network. The first two columns of Table 2 provide direct evidence
for the utility of the learned embedding. These columns compare
the performance of single-task neural networks trained using only
the PSI-BLAST embedding or trained using a combination of the
PSI-BLAST and learned amino acid embeddings. Considering
only the amino acid-level accuracy, including the embedding
improves the network’s performance on 7 out of 10 tasks.

Furthermore, when we consider adding the amino acid embedding
in the context of multitask learning (comparing columns ‘‘Multi’’
and ‘‘Multi-Embed’’), we observe an improvement in 9 out of 10
tasks. The largest improvement is observed for relative solvent
accessibility prediction, which improves by 1.8% (from 79.2% to
81.0%) in the multitask setting.

Thus far, these observations are only qualitative. However, to
avoid problems with multiple testing correction, we chose not to
perform a statistical test comparing the performance of each
algorithm with and without the embedding layer. Instead, we
perform at the end a statistical test jointly with respect to all three
of our hypotheses.

Multitask learning
Next, we evaluate the performance improvement to be gained

by performing multitask learning when using just the PSI-BLAST
features. Columns 1 and 3 (‘‘Single’’ and ‘‘Multi’’) in Table 2
compare the performance of networks trained one task at a time,
versus networks trained in a multitask fashion. For the multitask
learning, we experimented with various joint training schemes,
and we settled upon the following. First, we pre-train a joint
network for four ‘‘larger’’ tasks–dssp, ss, sar, saa. We then use the
resulting learned joint model as a starting point for joint learning
of nine tasks–the original four, plus dna, cc, ppi, sp and tm. For
task cb513ss, to avoid overfitting between the ss and cb513ss tasks,
we train a separate joint network from the task sar and saa, then
multitask the joint model with cb513ss.

In all 10 cases, multitask learning improves the amino acid level
accuracy. Not surprisingly, the performance difference is most

Table 2. Comparison of learning strategies based on percent accuracy.

Embedding? 3 3 * * *

Multitask? 3 3 3

Natural protein? 3 3 3

Task (%) Single Embed Multi
Multi-
Emb NP NP only All3 All3+Vit p-value CV Previous

ss 79.1 79.6 80.5 81.3 79.7 67.7 81.7 81.4 1e-4 100 –

cb513ss 76.1 74.5 79.8 80.2 74.8 65.8 80.2 80.3 1e-3 100 80.0 [18]

dssp 65.5 66.3 67.1 68.1 66.3 54.3 68.2 68.2 1e-4 100 –

sar 78.4 79.8 79.2 81.0 79.8 73.1 81.0 81.1 1e-4 100 –

saa 80.7 81.3 81.7 82.6 81.3 74.2 82.6 82.6 1e-4 100 –

dna 82.4 82.2 85.3 87.0 82.3 81.1 88.6 89.2 1e-4 66.7 89.0 [7]

sp 80.9 80.7 83.6 83.9 80.7 69.4 84.1 91.0 1e-4 100 –

sp (prot) 99.5 99.5 99.8 99.8 99.8 99.8 99.7 99.8 5e-2 – 97.0 [26]

tm 87.1 87.5 89.0 89.3 87.7 85.8 89.4 92.1 1e-4 100 –

tm (seg) 91.0 96.9 97.4 98.3 96.7 92.7 98.4 96.5 1e-4 – 94.0 [26]

cc 88.6 89.9 93.1 94.2 90.7 87.3 94.4 96.6 1e-4 100 –

cc (seg) 90.7 91.9 94.5 95.6 92.0 89.7 95.7 97.4 1e-4 – 94.0 [41]

ppi 73.6 73.6 78.4 73.1 73.6 71.0 74.3 75.6 1e-4 66.7 – [50]

The table lists, for each prediction task, the per-residue percent accuracy achieved via single-task training of the neural network with just the PSI-BLAST features
(‘‘Single’’), single-task training that includes the amino acid embedding (‘‘Embed’’), multitask training just using the PSI-BLAST features (‘‘Multi’’), multitask training
including the amino acid embedding (‘‘Multi-Emb’’), multitask training of one task along with the natural protein task (‘‘NP’’), multitask training without the PSI-BLAST
embedding module but initializing the amino acid embedding by using the natural protein task (‘‘NP only’’), multitask training including the natural protein task (‘‘All3’’),
‘‘All3’’ with Viterbi post-processing (‘‘All3+Vit’’) and a previously reported method (‘‘Previous’’). Each row corresponds to a single task. The p-value column indicates
whether the difference between ‘‘Single’’ and ‘‘All3+Vit’’ is significant, according to a Z-test. The ‘‘CV’’ column is computed based on the accuracies separately for each
cross-validation fold. It counts the percentage of CV folds in which the ‘‘All3+Vit’’ method outperforms the ‘‘Single’’ method. Rows labeled ‘‘(prot)’’ or ‘‘(seg)’’ report the
protein- or segment-level accuracy, rather than residue-level accuracy. For the ‘‘NP’’ setting, the ‘‘*’’ in the ‘‘Embedding?’’ row indicates that this network uses the pre-
trained embedding layer from the natural protein task.
doi:10.1371/journal.pone.0032235.t002
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dramatic for tasks with small training sets. For example, the
performance on the DNA binding task, which has a data set of 693
proteins, jumps from 82.4% to 85.3%, and the prediction of coiled
coil regions, with a data set of 765 proteins, improves from 88.6%
to 93.1%. The secondary structure prediction tasks show how
multitask learning helps with small data sets: for the small, CB513
data set, the accuracy improves by 3.7%, whereas for the larger
secondary structure prediction benchmark, accuracy increases by
1.4%. Similar conclusions can be drawn by comparing the
‘‘Embed’’ and ‘‘Multi-Embed’’ columns: in all 10 cases, multitask
learning improves the amino acid-level accuracy.

Natural protein prediction
Finally, we evaluate the utility of the natural protein prediction

task. The results in Table 2 confirm that multitasking with this
natural protein task is an effective strategy to improve deep neural
network training. Comparing column ‘‘Embed’’ to ‘‘NP’’, we see
that the performance improves in all cases. The benefit of the
natural protein task is more apparent in conjunction with
multitask learning, because the latter needs to handle much more
complicated cases and to search in a larger parameter space,
where a better starting position alleviates the difficulties associated
with small training sets. Comparing the ‘‘Multi-Embed’’ column
with ‘‘All3,’’ we see that adding the natural protein task improves
the amino acid level accuracy for nine out of ten tasks. In general,
however, adding the natural protein prediction task is not as
beneficial as adding multitasking. This observation implies that
inter-task dependencies provide more information than the
contraints introduced via the natural protein embedding.

Furthermore, Figure 4 provides qualitative evidence that this
embedding is helpful. Here, we used principal component analysis
to project a learned, 15-dimensional amino acid embedding down
to two dimensions for the purposes of visualization. The figure
shows that amino acids with similar physical and chemical
properties are embedded closely to one another. For instance,
we observe clustered groups of hydrophilic (DEKQN) and
hydrophobic (LMIVC) amino acids. We also observe that pairs
of amino acids that are close in the embedding tend to have high

BLOSUM62 scores [56,57], indicating that they can readily
substitute for one another in real protein sequences. Specifically,
we calculate the k-nearest neighbors for each amino acid, first
based on our learned embedding and then based on BLOSUM62.
We found that, with k~3, 62% of the amino acid neighbors
identified by one method were also identified by the other. This
result suggests that the learned embedding is closely related to
BLOSUM62, even though it is learned purely from unlabeled
protein sequences without any additional information.

To better understand the impact of the natural protein task, we
also evaluated our system without the PSI-BLAST embedding
module, but initializing the amino acid embedding with the
embedding layer from the natural protein task. These results are
reported in Table 2 in the column labeled ‘‘NP only’’. The ‘‘NP
only’’ network performs worse than ‘‘Embed’’ (which uses a
randomly initialized amino acid embedding plus the PSI-BLAST
embedding) in 9 out of 10 tasks; however, combining the natural
language task with the PSI-BLAST embedding (i.e. ‘‘NP’’) makes
better predictions than ‘‘Single’’ in 8 out of 10 tasks. Thus, the
embedding learned from the natural protein task is complemen-
tary to the PSI-BLAST features.

Viterbi post-processing
Thus far, our neural network framework uses a labeling-per-

amino-acid strategy without exploiting dependencies among the
targeted classes. This approach assumes that the label of each
position in a protein sequence can be predicted independent of
nearby positions in the sequence. Empirically, this assumption fails
dramatically for many local structure alphabets. For instance, the
repeated label patterns of abcdefg in coiled coil predictions exhibit
strong inter-label dependencies. It is straightforward to handle
these local dependencies by applying a Viterbi (dynamic
programming) post-processing step on the label posteriors. Adding
this postprocessing step on our multitasking deep network ouputs
(the ‘‘All3+Vit’’ column in Table 2) improves the the performance
on 7 out of 10 of our tasks.

Evaluation of the final system
The ‘‘All3+Vit’’ column in Table 2 represents the final

performance of our multitask learning strategy. To evaluate the
statistical significance of the difference between these results and
the initial results provided by the single-task neural network, we
performed a Z-test on each task. The result p-values are reported
in Table 2. For almost all tasks, the ‘‘All3+Vit’’ setting is
consistently better than the ‘‘Single’’ case, with most of the p-
values smaller than 0.05. The only exception is the signal peptide
task, assessed according to the protein level accuracy. The lack of
statistical significance here is partly because the existing methods
already achieve very good performance (99.5%) and partly
because the protein-level metric provides fewer data points as
input to the statistical test.

Relative to published, state-of-the-art prediction systems, our
multitask, deep learning methodology fares quite well. For the
secondary structure prediction task, our system achieved 80.3%
amino acid level accuracy on the benchmark CB513 secondary
structure prediction data set, which is slightly better than the state-
of-the-art 80.0% [18]. For the signal peptide and transmembrane
protein topology prediction tasks, our system outperforms Philius
[26] on the same benchmark, though this improvement is partly
because Philius does not make use of homology information. For
prediction of coiled coil regions, our performance of 97.4% beats
the best result (94%) on the same data set from [41] using the same
evaluation setup. For the DNA binding task, our performance of

Figure 4. A learned amino acid embedding. The figure shows an
approximation of a 15-dimensional embedding of amino acids, learned
by a neural network trained on the natural protein task. The projection
to 2D is accomplished via principal component analysis.
doi:10.1371/journal.pone.0032235.g004

Multitask Learning to Predict Protein Properties

PLoS ONE | www.plosone.org 9 March 2012 | Volume 7 | Issue 3 | e32235



89.2% is slightly better than that of a previously described system
[7].

Comparison based on Precision/Recall/F1
As mentioned above, we compute precision, recall and F1 scores

by treating each selected class as the positive class and all of the
other classes as negatives for the multi-class tasks. The resulting
comparison, provided in Table S1, shows that the conclusions based
on accuracy in Table 2 still hold when we consider these alternative
performance metrics. For example, we can see that most tasks’
performance improves from ‘‘Single’’ to ‘‘Multi’’, from ‘‘Multi’’ to
‘‘MultiEmbed’’, from ‘‘MultiEmbed’’ to ‘‘All3’’ and from ‘‘All3’’ to
‘‘All3Vit’’. For one task–protein-protein interaction–this trend is not
maintained. In this case, multitasking does help (from ‘‘Single’’ to
‘‘Multi’’), but adding the embedding and ‘‘natural protein’’
strategies make the predictions of the interaction (‘‘P’’) class much
worse. This phenomenon may occur due to the small training set for
this task, which could not provide enough examples for the more
parameter-rich models like ‘‘MultiEmbed’’ and ‘‘All3’’.

For the protein-protein interaction (‘‘ppi’’) task, the ISIS system
[50] claimed its best performance as precision = 0:61 and
recall = 0:2 on the same data set as we use. The authors plotted a
precision-recall curve (though the terms ‘‘accuracy’’ and ‘‘coverage’’
of interaction were used in [50]) for different cut-offs on the
predicted score, and found this strongest prediction. In this paper,
we use ‘‘0.5’’ as the universal cutoff for all the covered learning
strategies to decide which class label an amino acid belongs to.
Despite allowing ISIS to pick an optimal threshold and restricting
our method to using a threshold of 0.5, under the ‘‘Multi’’ strategy,
our system results in precision = 0:649 and recall = 0:258, which is
better than what the ISIS system [50] has reported.

Discussion

We have described a multitask learning strategy for training a deep
neural network architecture for the prediction of a variety of local
protein properties. Our approach makes use of a learned embedding
to share information across related tasks and uses the natural protein
task to provide a good starting point for the learning of this

embedding. We demonstrated that learning tasks simultaneously can
improve generalization performance. In particular, when jointly
trained with the natural protein task, our architecture achieved state-
of-the-art performance in nearly all of the tasks that we considered.

We are not the first to suggest that multiple protein labeling
tasks should be considered jointly. Many previous authors have
combined tasks: transmembrane topology and signal peptide
prediction [58], secondary structure and solvent accessibility [8],
secondary structure, solvent accessibility and DNA-binding sites
[7]. Nonetheless, we believe that the ability to train jointly on a
large variety of tasks is novel and provides a flexible, robust
prediction system that will be of great practical utility.

Our methodology could easily be adapted to additional tasks,
such as the prediction of glycosylation sites, torsion angles, etc.
The methodology could likely also benefit from further optimiza-
tion. For example, it is possible to induce better pseudo-negative
examples in the proposed natural protein task by adding biological
knowledge, e.g., by simulating evolution. This, in turn, might
increase our system’s performance even more.

Supporting Information

Table S1 The table lists, for each prediction task, the per-residue
per-class performance, i.e. (precision, recall, F1, total number of
provided positive amino acids, true positive) averaged per cross-
validation test fold, achieved via single-task training of the neural
network with just the PSI-BLAST features (‘‘Single’’), multitask
training just using the PSI-BLAST features (‘‘Multi’’), multitask
training including the amino acid embedding (‘‘MultiEmbed’’),
multitask training including the natural protein task (‘‘All3’’), and
multitask training including the natural protein task with Viterbi
post-processing (‘‘All3+Vit’’).
(PDF)
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