c1=Ye ge - M Learning the Dependency Structure of Latent Fa NEC Laboratories
Tech Yunlong He*, Yanjun Qi+, Koray Kavukcuoglut, Haesun Park* Amerlca

*Georgia Institute of Technology + NEC Labs America Relentless passion for innovation

Background: General Formulation More Experiment

Goals Considers data samples drawn from the exponential family. Structured Visualization of NIPS topics

1. Learn interpretable latent factors with hidden Introduce a pairwise Markov Random Field (MRF) prior on the Negatively Related Topics

mutual dependency. vector of factors.
2. Learn a concise dependency structure between Objective 1

latent factors. BSe® N

Linear latent factor mode Flog 201.0) + sy + Linstes) + Lol
where B = [By, ..., B.] is fixed but unknown, s.t.B>0,[Bglla <1Lk=1,..., K.

s = (s, ..., Sk) € R¥ : latent factors » The algorithm is based on Block Coordinate Descent algorithm and
exhibits convergence behavior to a stationary point.
* An online algorithm for learning SLFA scales to large data sets.
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Sparse Undirected Graphical Model

Example: Gaussian random vector s~N (0, @~ 1)
. = 0:5; and s; are conditionally independent.

> 0: s; and s; are negatively correlated. Synthetic Data

i < 0:s; and s; are positively correlated.
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Structured Latent Factor Analysis (SLFA)
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» Basic idea: Gaussian prior distribution for the latent
factor vector s:
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2.Sparse graph to ease the analysis.
3.To avoid over-fitting to the data.
4.To avoid singular solutions
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Recovering structured latent factors from data. On the upper row are four different underlying graphical model of
latent factors. Red edge means the two latent factors are positively related (@;;< 0), blue edge implies the two

for the optimization problem. latent factors are negatively related (@;; > 0). On the lower row are the plots of F-score vs. for four settings. We e
B can observe that SLFA (red lines) is as good as an oracle method (True Basis, green lines). The pink dash lines of | ® Analysis ®>0: neg_a’Flver correlated
> O BIC score (scaled to [0; 1]) demonstrate that the parameter selection method works well. SLFA Basis ® <0 : positively correlated
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Method SLFA Lasso |_asso SVM PCA
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Gaussian case: SLFA

Tumor classification based on gene expression values of 8141 genes for
295 breast cancer tumor samples. SLFA does not use prior knowledge

like biological gene network graph.
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