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ABSTRACT 

The efficacy of many Body Sensor Network (BSN) applications 

relies on the accurate temporal clustering of human motion into 

actions on various time scales. This is typically done with the use 

of inertial sensors and processing algorithms that try to extract 

such information from the sensor data. Two human factors in real-

world deployments make such information extraction challenging: 

mounting errors (where sensor displacement and orientation do 

not match what is assumed by processing algorithms) and 

insecure mounting (where sensors are loosely worn causing them 

to shake during operations). 

In order to enhance the robustness of human actions clutsering 

from real-world BSN data, this work leverages dynamical systems 

modeling with the considerations of human factors. By proposing 

a computational body-model framework called the piecewise 

linear dynamical model (PLDM), we derive a robust method to 

segment time series data of inertial BSNs in real-world 

deployment with human factors into motion primitives and 

actions. We test the proposed method on two different inertial 

BSN datasets and extract actions on different temporal scales. The 

experimental results demonstrate the effectiveness of our 

approach. 

Categories and Subject Descriptors 

J.3 [Life and Medical Sciences]: Health, Medical information 

systems.  
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Algorithms, Measurement, Performance, Experimentation, 

Human Factors, Verification  
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1. INTRODUCTION 
In recent years, inertial body sensor networks (BSNs) that can 

capture, detect, and recognize human motions have attracted much 

attention from medical researchers and healthcare professionals 

due to the large number of potential applications in long-term 

health monitoring systems [1,2]. The efficacy of these systems 

greatly depends on accurately extracting set of actions from 

inertial data (an example is shown in Figure 1).  

Despite considerable advances [6] in extraction of actions from 

inertial body sensors and in prototyping and deploying motion 

recognition systems, two issues make the real deployments 

difficult: mounting errors (from sensor displacement orientation) 

[3] and looseness of sensors [4] (we discuss these issues more in 

Section 2). 

 

Figure 1. Clustering of inertial BSNs data in hierarchical 

levels including actions and motion primitives (Table 1). The 

subject is equipped with four body sensor nodes, which each 

contains three-axial accelerometer and three-axial gyroscope 

to capture the acceleration and angular velocity data, on 

left/right wrists and left/right ankles. 

Table 1. Motion primitives in human actions 

Walking Jumping Running Punching 

Heel Strike 

(Left/Right) 

Heel Strike 

(Both) 

Heel Strike 

(Left/Right) 

Punch Forward 

(Left/Right) 

Toe off 

(Left/Right) 

Hand Wave 

(Both) 

Toe off 

(Left/Right) 

Punch Back 

(Left/Right) 

Hand Wave 

(Left/Right) 
 

Hand Wave 

(Left/Right) 
 

In this work, we propose a method, namely the Piecewise Linear 

Dynamical Model (PLDM) with Motion Stimulus Detection for 

extracting sets of human actions from inertial data at different 

time scales which is robust to these two issues. We are able to 

differentiate at the coarse level between activities like walking, 

running, and punching, as well as to segment finer parts of actions 

like walking into heel strike and toe off.  

Our insight (detailed in Section 3) reveals that inertial sensor data 

is the output of a dynamical system (the sensor’s dynamics that  
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Figure 2. Typical processing pipeline to recognize activities from wearable sensors [6]. 

transfer physical motion to a measured voltage) driven by 

stimulus (human actions on the sensor that drive the sensor 

motion). We evaluate our method (in Section 4) on two sets of 

inertial data; one that we collected ourselves for extracting 

coarse actions, and another from Chen et al. [5] which was used 

in segmenting walking action into finer actions like heel strike 

and toe off. In both cases we compare to state-of-the-art 

methods for the particular kind of extraction.  

2. BACKGROUND 
Typical action extraction or activity recognition systems follow 

the process illustrated in Figure 2 (adapted from Bulling et al 

[6]). The raw data is first preprocessed to correct for calibration 

of sensors and then is segmented. For each segment, features, 

for instance, mean, variance, or kurtosis, frequency, slope, 

curvature, duration and co-occurrences of inertial data [6], are 

extracted. The extracted features may be combined or 

transformed using a particular function and are then passed to a 

classifier to determine the particular action. 

Many techniques used in the processing pipeline assume that 

sensors are mounted properly and worn tightly. However, recent 

studies [4], which investigated the optimal sensor placement 

when utilizing inertial data to assess physical activity, have 

revealed that the unknown human factors during deployments of 

inertial BSNs contribute a major challenge for accurate human 

action segmentation.  

Aiming to achieve more accurate human activity identification 

from inertial BSN data, this paper considers the human factors 

associated with the mounting. Specifically, we focus on two 

main types of human factors during the mounting process of the 

inertial BSN sensors: mounting error and insecure mounting.  

From our empirical analysis, a typical case where mounting 

errors occur happens when caregivers attach the sensor nodes on 

the subjects’ bodies according to the instructions from engineers 

or doctors. Instructions such as “on left ankle or right wrist” are 

followed accurately; however, instructions such as “keep the z 

axis of the nodes up” result in confusion. If the caregivers 

incorrectly set up the orientation of the sensor nodes, the data 

from the inertial BSNs will be totally different from previous 

deployments because of the mounting error.  

In addition, while it is desirable to have inertial BSNs that are 

tightly affixed to the body to get an accurate signal, the 

wearability of current sensor nodes is not sufficient, and wearing 

sensors tightly can be uncomfortable for subjects. This often 

causes caregivers to loosen the straps of the sensor nodes to put 

subjects at ease, resulting in insecure mounting. Under these 

situations, the inertial BSNs will generate much higher noise due 

to the vibration of sensor nodes, relative to the underlying 

human motion.  

Figure 3 illustrates sample experimental data when inertial 

nodes are mounted insecurely or incorrectly. Two of the nodes 

are mounted securely and one is mounted insecurely. The two 

securely mounted inertial nodes have different orientations on 

the ankle. The inertial nodes with same orientation have similar 

signals, while the inertial nodes with different orientations have 

very different signals. In addition, the insecurely mounted 

inertial node gains noise from sensor node motion which adds to 

the body motion in the signal. 

 

Figure 3. Experimental results of unknown human factors 

Left picture shows three inertial sensor nodes equipped on 

left ankle of a subject with their corresponding signals. The 

bottom two were mounted securely and the top one was 

mounted insecurely.  

Despite the success of various activity analysis algorithms to 

improve the system performance, most existing algorithms are 

limited in one aspect: the main requirement for activity analysis 

algorithms to work well includes that the sensor signal exhibit 

stable and repeatable patterns. In other words, the signal patterns 

should exhibit similarity for the same motion within certain 

tolerant range. However, human factors during the deployment 

of inertial sensors may cause the signal patterns to become 

unstable and unrepeatable for the same motion. Therefore, 

adding the considerations of human factors during the 

deployment of inertial body sensors should enhance the system 

performance in real-world deployments.  

3. PLDM 
For dealing with the effects of human factors during real 

deployments, we propose a model-driven technique based on 

dynamical systems. Our main insight is that the process of 

extracting sets of actions from inertial data is equivalent to 

developing a state observer for a plant in dynamical systems 

theory. Using this analogy, the human (plant) can be viewed as a 

hierarchical control system where at the highest level the person 

decides to take coarse actions like walk, run, or punch; at the 

middle level, these coarse actions are translated into sequence of 

actions (heel strike, toe off, swing phase for walking); and at the 
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lowest level, these sequence of actions are translated into fine-

grained controlled movements that are adapted to the 

environment in which this action is taking place.  

The inertial sensors measure these lowest-level movements and 

since these sensors are also non-linear dynamical systems, we 

can view the lowest-level movements being measured as stimuli 

to this sensor system. Our job is therefore to estimate the set of 

actions (sequence of states) that have produced these lowest-

level movements (or stimuli). We must note that in our actual 

extraction we do not distinguish between the three different 

levels on the human side. This is because the lower-level 

movement can be viewed as a representation (signature) of any 

of the higher levels. This is also why our method works for both 

coarser and finer set of action extraction. 

Based on the previous processing pipeline in Figure 2, Figure 4 

illustrates the diagram of the proposed method which integrates 

the body motion modeling into feature extraction to increase the 

robustness of handling human factors. 

 

Figure 4. Proposed method integrates the body motion 

modeling into feature extraction. The body motion is 

modeled as a hybrid system which contains linear dynamical 

state transition and nonlinear observation process. Motion 

stimulus (  ) is used as extracted features. 

3.1 Linear Dynamical Model 

Observed human action data from inertial BSNs can be viewed 

as a multivariate time series. We model such multivariate time 

series         as outputs of a nonlinear dynamical system (the 

sensor) driven by a one dimensional sparse and bounded 

stimulus,       . Our work is motivated by Raptis’ work [7] 

which holds an assumption of the linearity of the dynamical 

system. However, since inertial BSNs generally use as sensors 

accelerometers, which have random transients [9], and 

gyroscopes, which have random drift [8], a linear model is not 

ideal for inertial BSNs.  

In the past, in order to address the nonlinearities of 

accelerometers, pre-low-pass filter [3], post signal processing 

methods [10] and the compensation from other systems such as 

cameras [11] have been adopted. In addition, in order to model 

the random drift, nonlinear signal processing methods such as 

neural networks [12], Kalman filters [13] and cascaded 

nonlinear models [8] have been used to infer the models. We, 

however, use a much simpler approach detailed below.  

The dynamical system for modeling of human actions with 

inertial BSNs includes two parts, linear state space transition and 

nonlinear observation. The linear state space transition is 

defined by a system matrix       , stimulus matrix   
    and a state vector       . The nonlinear observation is 

defined by an observation matrix       and the probability 

      of the random noise. In the above definition,   

describes the order of the linear state space transition of the 

dynamical model and p is the dimension of the observation. This 

model is expressed as follows [7]: 

             

               

                       |      |
 

                                      

                   

             

where            is the number of nonzero elements in the 

stimulus sequence. 

An expectation–maximization (EM) algorithm is applied to 

estimate the A, B, C, S and x matrices under the assumption of 

system linearity and time invariance. However, in equation (1), 

the observation matrix C, which being related to the inertial 

sensors, depends on the mounting position of the sensor, and 

insecure mounting contributes noise in C (and CS(t) should 

really be a non-linear function C(S(t))). The probability function 

of random noise P depends on the physical characteristics of the 

sensors. In other words, C and P cannot meet the required 

linearity and time-invariance assumptions, which makes solving 

the equation intractable.  

In order to reduce the complexity of equation (1) and make it 

tractable, we cut the time sequence     into small pieces where 

each piece contains the non-trivial motion information. With this 

strategy, we can approximate this nonlinear dynamical system as 

a piecewise linear dynamical system, since the random noise P 

and observation matrix C could remain constant for signals of 

short periods [8]. We therefore require a robust motion stimulus 

detection method to cut the time series data into pieces with the 

consideration of potential mounting errors or insecure mounting. 

3.2 Motion Stimulus Detection 

The initial segmentation of time series data requires robust 

tolerance of incorrect or insecure mounting. Since PLDM is 

used to infer the motion stimulus of the system, we can develop 

a method to detect the moments when the body gets the 

stimulus. 

 

Figure 5. Examples of motion stimulus in human actions. In 

hand waving, the motion stimulus will be the moments when 

the hands change its motion direction (a), while the motion 

stimulus of walking will be the moments will be the moments 

when heel strikes the ground and the toe get off the ground. 

As shown in Figure 5, the motion stimulus of the hand waving 

action will be the moments when the hand changes its motion 

direction, while the motion stimulus of walking will be the 

moments when heel strikes the ground and the toe comes off the 

ground. This is because in these moments, the human stimuli at 

the related body parts can cause a dramatic change in positional 

and/or rotational motion. In other words, the moments of motion 
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stimulus include the salient points in inertial sensor data with 

remarkable three-dimensional curvatures.  

Since the sensor nodes are mounted on the body to capture the 

motion data, it is reasonable to assume that the motion stimulus 

does not depend on the mounting condition of sensor nodes on 

the body.    

Recently Olivares et al. [14] conducted a comprehensive study 

on testing various event detection methods. According to their 

experimental results, Stance Hypothesis Optimal Detector 

(SHOD) and Long Term Spectral Detector (LTSD) performed 

better than others. However, the motion assumption in SHOD 

cannot match well with the detection requirements of motion 

stimulus when considering human factors, while LTSD has very 

high computional complexity. Therefore, based on the definition 

of motion stimulus, we develop a novel angular rated curvature 

detector (ARCD) to detect the motion stimulus moments. 

 

Figure 6. Curvature estimation of (a) time series data of 

gyroscope in phase space representation. (b) Calculate the 

individual curvature for each axis of gyroscope and then get 

the (c) scalar time-series curvature for three axis via a 3D 

gradient operator. 

Because the calculation of curvature of time series data needs to 

focus on short-term data processing, we prefer to use gyroscope 

data to determine the motion stimulus because short-term 

gyroscope data does not have random drift and also does not 

have random spikes that are often seen in accelerometer data.  

Our method is based on Rusinkiewicz [15] who presented a 

curvature estimation method for triangle meshes. However, it 

needs high computational complexity and is not appropriate for 

time series. We therefore simplify the calculation process to 

estimate the curvature for short-term time-series gyroscope data 

as follows: 

          (  (  ( (      )  (      )  (      ))))   (2) 

where     is the gyroscope data from an individual axis,   is the 

gradient function of n-D signal. From the equation (2), we 

calculate the individual curvature for each axis of the gyroscope 

and then get the scalar time-series curvature for three axis via a 

3D gradient operator, as shown in Figure 6. The detected motion 

stimulus corresponds to the peak of the estimated curvature. 

Figure 7 shows the preliminary curvature estimation results 

under different conditions of insecure mounting, incorrect 

mounting and correct mounting, based on the data from the 

experiment shown in Figure 2. Since the peaks of the estimated 

curvature are the detected motion stimulus, as we can see, the 

peaks of the estimated curvature with mounting errors are 

almost the same as those with correct mounting. Also, even 

when sensor node vibration noise is added into the data, the 

motion stimulus contributed by human actions can be revealed 

in the estimated curvature. That means, the curvature based 

motion stimulus detection is robust to mounting errors and is 

relatively robust to insecure mounting. 

 

Figure 7. Estimated curvature value of time series gyroscope 

data under different conditions of insecure mounting, error 

mounting and correct mounting. 

3.3 PLDM Features 

We then construct a dynamical model for each piece composed 

of a window around each motion stimulus. As we discussed 

earlier in section 3.1, each piece of the human actions can be 

approximated as a linear dynamical model. Therefore, equation 

(1) can be rewritten as follows: 

             

               

                                    |      |
 

                                    

                   

           

       

where observation matrix C is a time-invariant matrix in the 

short period of each piece, and   is the length of each piece. 

Based on EM algorithm, we caculate A , B, C and S with an 

initial given x, then refine x based on the initial estimated A, B, 

C and S, and repeat the EM process until the cost function 

converges (Figure 8 shows the pseudo code of EM algorithm). 

After the model construction via EM algorithm, we can get the 

estimated stimulus vector for each piece of the linear dynamical 

model,              . For more information about the EM 

algorithm, we refer the reader to [7]. 

To construct a PLDM feature, we detect the motion stimulus as 

in Section 3.2 from available sensor nodes. Second, we utilize 

PLDM to model each piece from each sensor node to generate 

the stimulus vector     . Third, we construct histograms of the 

stimulus vectors. Each histogram is quantized into 11 bins, 

equally spaced in a range from -1 to 1. Finally, to encode 

information from the stimulus to the articulated body, the 

histograms for multiple sensor nodes are stacked together to 

create a descriptor of human motion at each motion stimulus. 

Figure 8 shows an example of PLDM feature extraction process. 

3.4 Hierarchical Temporal Clustering 

Based on the representation of the articulated body motion, this 

section describes how to build the feature set for different 

temporal scales in a hierarchical manner, because the 

segmentation of human actions requires considering different 

temporal scales for different purposes. 
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Figure 8. Diagram of PLDM feature extraction and clustering process. Motion stimulus detection initially segments the time-series 

inertial data into pieces. Data pieces can be selected hierarchically from different temporal scales which depend on our clustering 

purpose. Selected data piece feeds into EM algorithm to estimate motion stimulus. Based on a local linear dynamical model, 

combined motion stimuli are used as PLDM features in next-step clustering.

For the coarse level of the segmentation of human actions, such 

as recognition of walking, running, and other types of behaviors, 

we can combine all the estimated curvatures from all sensor 

nodes to detect the motion stimulus, and then generate the 

feature set. For the fine level of the segmentation of human 

actions, such as recognition of walking motion events such as 

heel strike and toe off, we can focus on the time series data from 

sensor nodes mounted on the ankles, detect the motion stimulus 

and then generate the feature set.  

Next, we perform temporal clustering to convert hierarchical 

features into action clusters (Figure 8 shows the hierarchical 

temporal selection process from the data pieces set). For the 

temporal clustering, we use the lossy coding approach of [16] to 

produce an optimal unsupervised segmentation. At the final step, 

the user will be able to look over the clustering results and label 

each cluster as name of the actions. 

Given the feature set by our algorithm, this full segmentation 

procedure takes approximately 1 minute on a set of 1000 pieces. 

4. EXPERIMENTAL RESULTS 
We conducted two experiments to demonstrate the ability of our 

PLDM-based technique to segment actions at both fine and 

coarse time scales. In each experiment we have compared the 

segmentation performance to another state-of-the-art algorithm 

for doing particular scale segmentation. The choice of algorithm 

was based on the ability to perform a fair comparison. 

4.1 Coarse Level Clustering Experiments 

In this experiment, six natural actions (straight walking, running, 

jumping, sideways walking, punching, and body rotation) were 

performed in sequence with short breaks between two 

continuous actions. Each subject wore four inertial sensor nodes 

(on the left and right wrist and left and right ankle). Each action 

sequence was repeated for three times under different mounting 

conditions: correct mounting, mounting with displacement error, 

and insecure mounting. The sampling rate of the inertial sensors 

is 128Hz, and the length of time series data (for one sequence of 

six actions) ranges from 3 minutes to 5 minutes. 

Figure 9 shows the segmentation results obtained through (1) 

PLDM, (2) manual labeling (ground truth was accounted by 

manual stopwatch), and (3) the aligned cluster analysis (ACA) 

method proposed by Zhou et al. in [17] for both subjects. 

Different actions in the sequence are marked with different 

colors. The gray stripes in the ground truth sequences indicate 

areas where the judgments vary among labels or no judgments at 

all, because our hypothesis in PLDM is that if there is no motion 

stimulus in the human motion, that particular segment belongs to 

“no movements at all.” PLDM and ACA both work well under 

the correct mounting condition; however, actions identified by 

PLDM are closer to manual labeling than those from the ACA 

method under incorrect mounting conditions. The ACA method 

fails to identify actions with insecure mounting. In fact, 

according to experimental results in [17], the ACA method 

should be reliable in the incorrect mounting condition under 

secure mounting. However, in reality, mounting errors are 

always accompanied by insecure mounting, which ACA could 

not handle well. 

Choosing ACA as the baseline is because ACA was the only 

method we found to be action-label-definition-agnostic. In other 

previous action clustering or recognition methods [6, 18, 19], the 

experimenters determine the labels for the actions, and their 

implicit definition of actions may differ from ours. Since we do 

not have access to their datasets it is unfair to measure their 

methods with labels whose definitions may differ from the ones 

on which those methods were originally developed. 

4.2 Fine Level Clustering Experiments 

The second experiment is based on the dataset used by Chen et 

al. for multiple sclerosis [5]. Here the goal is to identify the 

“heel strike” and “toe off ground” points in data from 6-minute 

walks by subjects. This finer time scale action extraction is used 

to measure various properties of gait in order to identify 
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disorders in the gait patterns. The data consists of 44 sequences 

from 27 subjects (some subjects contribute several experimental 

sequences). Each subject wore five inertial sensor nodes similar 

to those in our previous experiment (at the same four locations 

as the previous experiment but with hip as additional location). 

 

 

Figure 9. Clustering experiments by PLDM and ACA. 

Ground truth is captured by stop watch manually, where 

gray lines indicate the boundaries of actions. For PLDM 

and ACA, the gray lines show the composition of cyclic 

movements. The different colors correspond to different 

actions. 

Figure 10 and Figure 11 show a comparison of event detection 

performance between the PLDM and the method from Chen et 

al. [5] on the 44 sequences. We should mention that the 

threshold used by [5] in detecting the peak of the motion events 

can be adjusted to fit the variability in the time series data.  This 

adjustment requires extensive manual analysis, and we adopted 

its default threshold, same as the method in [5]. We expect that 

average, a person takes two steps in a second (one for each leg) 

[20]. With some variance, this would mean the number of pairs 

of events should range from about 300 to about 400 for a six-

minute walk sequence. In general, PLDM indicates more motion 

events occur in each sequence than Chen at al.’s method and the 

PLDM values are within the expected range whereas the Chen et 

al.’s method indicates a very small number of events [5] and a 

fewer number of events overall.  

We compared to Chen et al because we had access to their 

original data and code for identifying the various events, though 

we did not have access to ground truth for the events.  

5. RELATED WORK 
As mentioned earlier, recognizing sets of actions in human 

motion is an important component of using inertial BSNs for 

monitoring and hence there has been quite a bit of work along 

this path. Bulling et al. [6] provided a tutorial with a 

comprehensive review of activity recognition methods. They 

developed a general framework for understanding the signal 

processing pipeline of these methods called the Activity 

Recognition Chain (ARC), which is a useful framework for 

researchers new to the field.  

Some of the notable methods identified in this survey include 

the use of template-based similarity metrics such as dynamic 

time warping (DTW) [17], or Principal Component Analysis 

(PCA) [21], and probabilistic methods like hidden Markov 

models (HMMs) [21], or statistical models [22] which are used 

to handle temporal dependencies in the data. In addition, 

discriminate approaches like support vector machines (SVMs), 

or decision fusion have been successfully applied in a number of 

activity recognition scenarios.  

Several previous studies have also incorporated some model of 

body motion into the recognition scheme. Zinnen et al. [18] 

introduced their particular body model into motion primitives 

(the feature extraction stage) such as upper arm, lower arm 

bending and rotation. Zhang et al. [19] developed a bag-of-

features (BoF) based method to describe the body motion model. 

The main drawback of these techniques is the assumption that 

similar body motions will produce similar signal patterns, which 

does not hold in real deployments because of the issues of 

human factors, such as mounting errors and insecure mounting 

that our work tries to address. 

Otherwise, recent study [23] shows that model driven method 

can be used to address the issue of mounting errors. Our work 

takes it further in the considerations of human factors during the 

real-world deployment of inertial BSNs. 

 

Figure 10. Experimental results of events detected by 

PLDM and method in [5] from walking scenarios. A pair 

of events during walking contains “heel strike the ground” 

and “toe off the ground”, which are the non-trivial motion 

stimulus in human walking actions. 

 

Figure 11. Comparison of events detected by PLDM and 

method in [5] from walking scenarios. 
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6. Conclusion 
In this paper, we propose PLDM, a technique that leverages 

dynamical system modeling with temporal clustering for the 

segmentation of human actions from time series data generated 

by the inertial BSNs. The main novelty comes from that PLDM 

combines a robust motion stimulus detection algorithm with a 

modified linear dynamical model. The motion stimulus detection 

algorithm is designed to solve challenges such as the inherent 

sensor errors of inertial BSNs and unknown human factors 

(mounting errors and insecure mounting) during the deployment 

of inertial BSNs. We have compared PLDM to state-of-the-art 

algorithms for different temporal-scale applications where 

PLDM has achieved better performance. 

Future work focuses on refining the PLDM, such as reducing the 

computational complexity of modeling process, optimizing the 

clustering process of human actions and exploring other 

applications. 
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