
ASSOCIATION RULE MINING
MICRON AUTOMATA PROCESSOR

Ke Wang1,2, Yanjun Qi1,2, Jeffrey J. Fox1,3,
Mircea R. Stan1,4, Kevin Skadron1,2

1 Center for Automata Computing
2 Department of Computer Science
3 Department of Material Science
4 Department of Electrical and Computer Engineering
 University of Virginia

Outline
v  Micron Automata Processor (AP)

v  Association Rule Mining (ARM)

v  ARM on AP: Opportunities and Challenges

v  AP Accelerated ARM and optimizations

v  Performance Evaluation

v  Conclusions and the Future Work

Micron Automata Processor
q  Architecture

q  Function Elements and Capacity

State Transition Element (STE) �������������49,152

Counter Element

 768

Boolean Logic
Element ����� ���2,304

per chip

32-48 chips/board -> 1.5-2.5 million concurrent operations

Micron Automata Processor
q  Input and Output

q  Programming and Reconfiguration

u  The AP chip process one 8-bit symbol each cycle
u Multiple-Instruction Single-Data (MISD) architecture (Flynn’s “dark” corner)
u  Each AP chip can process up to 6 separate data streams concurrently
u  Any STE can be configured to accept the first symbol in the stream (start-

of-data mode), or every symbol in the input stream (all-input mode)

u  Automata Network Markup Language (ANML) is an XML language for
describing the composition of automata networks

u  ANML support the feature of macro, a container of automata for functional
encapsulating

u  Bundling with other languages: C, Python and Java
u GUI developing environment: AP Workbench
u  Fast reconfiguration: 50ms for whole board, 45ms for symbol replacement

only

Association Rule Mining

• Web usage mining
•  Traffic accident analysis
•  Intrusion detection

Association rule mining (ARM, or frequent itemset mining, FIM):
Ø  Identify strong rules discovered in databases
Ø  The order of items within a transaction doesn’t matter

•  Market basket analysis
•  Bioinformatics

Itemset
K-Itemset
Support: number of transactions which
contain this itemset
sup({Diaper, Milk})= 3
Minimum Support: threshold to tell
frequent or not

Trans. Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer, Coke

5 Bread, Milk, Coke, Diaper

ARM on AP: Opportunities and Challenges
q  Opportunities

q  Challenges

u  The basic operation of ARM is pattern matching and counting
u  The huge capacity of STE and counter elements of AP allows

matching/counting hundreds – thousands itemsets in parallel

Ø  The patterns in ARM are discontinuous
 For set {a,m}, the following transactions are all matched
 {a,m}, {a,b,m,}, {a, c, d, m, l}

Ø  The patterns in ARM are unordered
 For set {a,m}, the following transactions are all matched
 {a,m}, {m, b, a}, {m, a}
Ø  The number of patterns in ARM grow exponentially with the

size of itemset

AP Accelerated ARM - Algorithm
• Apriori framework:

§  Downward-closure property: a frequent itemset, all its
subsets are also frequent and thus for an infrequent
itemset, all its supersets must also be infrequent

• Apriori Algorithm:
§  Candidates of frequent (K+1)-itemsets are generated from

K-itemsets
§  Count the frequencies of candidates one by one to

determine the frequent ones
§  From 1 to n level itemset mining
§  AP is used to accelerate each level

AP Accelerated ARM – Concept

Transactions

Itemset

ARM

Frequency
counting

Input Stream
(Connecting by a special

symbol)

NFA by STEs

AP implementation

Counter Element

Item Symbol
8-bit or 16-bit

AP Accelerated ARM - Flowchart
Data preprocessing:
1)  Filter out infrequent items
2)  Recode -> 8-bit / 16-bit

symbols
3)  Recode transactions
4)  Sort items in transactions
5)  Connect transactions by a

special symbol �\x255�

Encoding:
 freq_item# <255: 8-bit
 254< freq_item# <64516:16-bit

Sorting:
Descending sorting according to
item frequency [1]

[1] Christian Borgelt, “Efficient implementations of Apriori and Eclat,” in Proc. FIMI ’03 , 2003

AP Accelerated ARM – Automata Design

Item Code
Bread 0
Milk 1

Diaper 2
Beer 3
Coke 4
Eggs 5

Separator 255(\xFF)

Transaction stream:

{Bread, Diaper}

Trans. Items
1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread,Milk, Diaper, Beer, Coke

5 Bread, Milk, Diaper, Coke

01\xFF0235\xFF1234\xFF01234\xFF0124

Level%0% Level%1% Level%2% Level%3%

Coun.ng%%
component%%

Level%0% Level%1% Level%2% Level%3% Level%4%

Coun/ng%%
component%%

{Milk, Beer, Eggs}

AP Accelerated ARM – Optimization
q  I/O minimization

q  Concurrent mining k-and (k+1)-itemsets

•  Add one more STE with a special symbol “254” for the ending sign of input
•  The counter keep activating this STE after its threshold is reached
•  Add one more ending symbol “254” in the end of input stream
•  Only last cycle gets reports; avoid multiple report vectors during processing

•  If capacity allows, mine k-itemsets and (k+1)-itemsets in parallel
•  To generate (k+1)-itemset candidates, assume all k-itemset candidates are

frequent

q  Avoid routing reconfiguration:
Entry&1& Entry&2& Entry&3&

 Multiple-entry NFA for variable-size itemset (MENFA-VSI).

(a) AP macro of ME-NFA-VSI

(b) Automaton for itemset {1, 3}

(c) Automaton for itemset {2, 7, 8}

(d) Automaton for itemset {4,5,25,30}

Performance Evaluation – AP

•  Target hardware: D480 X 48

•  8-bit encoding:
§  Capacity: 384 ME-NFA-VSI /chip, 18432/board

§  Speed: 7.5ns/ item

§  A ME-NFA-VSI supports 2-itemset to 40-itemset

•  16-bit encoding:
§  Capacity: 384 ME-NFA-VSI /chip, 18432/board

§  Speed: 15ns/item

§  A ME-NFA-VSI supports 2-itemset to 24-itemset

•  Symbol replacement time: 45ms for an entire board

q  AP capacity and overhead

Performance Evaluation - Comparison
q  Compare with other implementations

q  Testing platform

1.  Borgelt’s Apriori CPU sequential implementation [1] : �Apriori-CPU
2.  A CPU serial implementation of Equivalent Class Transformation

(Eclat) [2]: Eclat-1C
3.  A CPU multi-threading implementation of Eclat[2] : Eclat-6C
4.  A GPU implementation of Eclat[2]: Eclat-1G

o  CPU: Intel(R) Xeon(R) CPU E5-1650(6 physical cores 3.20GHz)
o  Mem: 32GB, 1.333GHz
o  GPU: Nvidia Kepler K20C, 706 MHz clock, 2496 CUDA cores, 4.8GB

global memory

[1] C. Borgelt, “Efficient implementations of apriori and eclat,” in Proc. FIMI ’03 , 2003, p. 90.’
[2] F. Zhang, Y. Zhang, and J. D. Bakos, “Accelerating frequent itemset mining on graphics
processing units,” J. Supercomput., vol. 66, no. 1, pp. 94–117, 2013.

Performance Evaluation - Datasets
q  Four real-world datasets

q  Three synthetic datasets

Pumsb, Accidents and Webdocs are from Frequent itemset mining dataset repository,”
http://fimi.ua.ac.be/data/.
ENWiki was generated English Wikipedia 2014

T40D500K and T100D20M ware generated from IBM Market-Basket Synthetic Data Generator
Webdocs5X is generated by duplicating transactions of Webdocs 5 times

Performance Evaluation – vs. Apriori-CPU

1

10

100

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

C
P

U
 A

pr
io

ri
C

om
pu

ta
tio

n
Ti

m
e

(s
)

S
pe

ed
up

 DP time SR time CPU time

Relative Minimum Support

Ti
m

e
B

re
ak

do
w

n
(%

)

100

50

0

 AP counting speedup
 Apriori-AP overall speedup

 Apriori-CPU counting time
 Apriori-CPU overall time
 Apriori-AP counting time
 Apriori-AP overall time

The performance results of Apriori-AP on Accidents. DP
time, SR time and CPU time represent the data process
time on AP, symbol replacement time on AP and CPU
time respectively

0.6 0.5 0.4 0.3 0.2 0.1 0.0

10

100 T40D500K Counting
 T40D500K Overall
 T100D20M Counting
 T100D20M Overall
 Webdocs5X Counting
 Webdocs5X Overall

S
pe

ed
up

Relative Minimum Support

The speedup of Apriori-AP over Apriori-CPU on
three synthetic benchmarks

Performance Evaluation – Apriori vs. Eclat

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
0.1

1

10

 Pumsb
 Accidents
 T40D500K
 Webdocs
 Webdocs5X
 T100D20M
 ENWiki

S
pe

ed
up

Relative Minimum Support

The performance comparison of CPU sequential Apriori
and Eclat

Thought Eclat (Equivalent Class
Clustering) has better performance on
CPU, it is not a good fit for the AP:
1)  Eclat requires bit-level operations;
 AP works on byte-level symbols
2) Eclat updates vertical
representations of transactions for
each new itemset candidate;
dynamically changing the input stream
is not efficient using the AP
3) Even the hybrid search strategy
cannot expose enough parallelism to
make full use of the AP chips

Though Eclat has 8X performance advantage in average cases, the vertical bitset
representation become less efficient for sparse and large dataset (high #trans and #freq
item ratio).

Performance Evaluation – Architecture impacts
q  STE symbol replacement time

q  Normalizing for technology

0.80 0.75 0.70 0.65 0.60 0.55
0

100

200

300

400

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Relative minimum support

 1.0X Symbol replacement time
 0.5X Symbol replacement time
 0.1X Symbol replacement time

The impact of symbol replacement time on Apriori-AP
performance for Pumsb

The symbol replacement latency
can be quite important for small
and dense datasets that require
multiple passes in each Apriori
iteration, but this latency may be
significantly reduced in future
generations of the AP.

To compare the different architectures in the same semiconductor technology mode,
we show the performance of technology projections on 32nm and 28nm technologies
assuming linear scaling for clock frequency and square scaling for capacity[1].

 [1] J. Rabaey, A. Chandrakasan, and B. Nikoli´c, Digital Integrated Circuits , 2nd ed. Pearson Education, 2003.

Performance Evaluation – vs. Eclat

0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25

10

100

1000

 Eclat-1C (32nm)
 Eclat-6C (32nm)
 Eclat-1G (28nm)

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Relative Minimum Support

 Apriori-AP 45nm
 Apriori-AP 32nm
 Apriori-AP 28nm

Eclat-GPU
fails

0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06

10

100

1000

10000

 Eclat-1C (32nm)
 Eclat-6C (32nm)
 Eclat-1G (28nm)

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Relative Minimum Support

 Apriori-AP 45nm
 Apriori-AP 32nm
 Apriori-AP 28nm

Eclat-GPU
fails

0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10
0.1

1

10

100

1000 Eclat-1C (32nm)
 Eclat-6C (32nm)
 Eclat-1G (28nm)

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
on

d)

Relative Minimum Support

 Apriori-AP 45nm
 Apriori-AP 32nm
 Apriori-AP 28nm

0.20 0.15 0.10 0.05 0.00
1

10

100

1000

10000

100000

 Eclat-1C (32nm)
 Eclat-6C (32nm)
 Eclat-1G (28nm)

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
on

d)

Relative Minimum Support

 Apriori-AP 45nm
 Apriori-AP 32nm
 Apriori-AP 28nm

Eclat-GPU
fails

Accidents (34MB)

ENWiki(3.0GB)

T100D20M (6.3GB)

Webdocs5X (7.1GB)

Performance Evaluation – Data size

100 1000 10000

5

50

500

5000

re_sup = 0.12

 Eclat-6C (32nm)
 Eclat-1G (28nm)
 Apriori-AP 45nm
 Apriori-AP 32nm
 Apriori-AP 28nm

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Size of Dataset (MB)

 Eclat-6C (32nm)
 Eclat-1G (28nm)
 Apriori-AP 45nm
 Apriori-AP 32nm
 Apriori-AP 28nm

GPU fails for
re_sup = 0.08

re_sup = 0.08

1 10 100 1000 10000
0.1

1

10

100

1000

GPU fails
re_sup = 0.42

re_sup = 0.42
 Eclat-6C (32nm)
 Eclat-1G (28nm)
 Apriori-AP 45nm
 Apriori-AP 32nm
 Apriori-AP 28nm

C
om

pu
ta

tio
n

Ti
m

e
(s

)
Size of Dataset (MB)

 Eclat-6C (32nm)
 Eclat-1G (28nm)
 Apriori-AP 45nm
 Apriori-AP 32nm
 Apriori-AP 28nm

GPU fails
re_sup = 0.3

re_sup = 0.3

Webdocs T100
T100: the datasets with different sizes are
obtained by varying the number of
transactions using the IBM synthetic data
generator

Webdocs: the different data sizes are obtained
by randomly sampling the transactions or by
concatenating duplicates of the whole dataset of
Webdocs

Conclusions and Future Work
v  Hardware-accelerated ARM solution using Micron’s AP architecture - MISD
v  Novel automaton design for ARM
v  Several optimization strategies:

•  IO minimization
•  Multiple-entry NFA to avoid routing reconfiguration
•  Concurrent mining

v  Proposed AP design can match and count up to 18,432 itemsets in parallel on an
AP D480 48-core board

v  Up to 129X speedup over single-core CPU implementation of Apriori
v  Outperforms the multicore-based and GPU-based implementations of Eclat ARM

with up to 49X speedups, especially on large datasets
v  Technology projections suggest even better speedups possible relative to the

equivalent-process node of CPUs and GPUs
v  Studies on data size demonstrate the memory constraint of parallel Eclat ARM,

particularly for GPU implementation but nice scalability of our AP solution
Ø  Will use the AP to accelerate other complex pattern mining tasks such as frequent

sequential pattern mining and frequent episode mining for next step

