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Micron Automata Processor 
q  Architecture 



q  Function Elements and Capacity 

 
State Transition Element (STE)                                    �������������49,152 
 
 
 
Counter Element   

                                                                                   768 
 
 
 
 
Boolean Logic   
Element                ����� ���������������������������������������������������2,304 
 

per chip 

32-48 chips/board -> 1.5-2.5 million concurrent operations 



Micron Automata Processor 
q  Input and Output 

q  Programming and Reconfiguration 

u  The AP chip process one 8-bit symbol each cycle 
u Multiple-Instruction Single-Data (MISD) architecture (Flynn’s “dark” corner) 
u  Each AP chip can process up to 6 separate data streams concurrently 
u  Any STE can be configured to accept the first symbol in the stream (start-

of-data mode), or every symbol in the input stream (all-input mode) 

u  Automata Network Markup Language (ANML) is an XML language for 
describing the composition of automata networks 

u  ANML support the feature of macro, a container of automata for functional  
encapsulating 

u  Bundling with other languages: C, Python and Java 
u GUI developing environment: AP Workbench 
u  Fast reconfiguration: 50ms for whole board, 45ms for symbol replacement 

only  
 



Association Rule Mining 

• Web usage mining 
•  Traffic accident analysis 
•  Intrusion detection  

Association rule mining (ARM, or frequent itemset mining, FIM): 
Ø  Identify strong rules discovered in databases  
Ø  The order of items within a transaction doesn’t matter 

•  Market basket analysis  
•  Bioinformatics 

Itemset 
K-Itemset 
Support: number of transactions which 
contain this itemset 
sup({Diaper, Milk})= 3 
Minimum Support: threshold to tell 
frequent or not 

Trans.  Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer, Coke 

5 Bread, Milk, Coke, Diaper 



ARM on AP: Opportunities and Challenges 
q  Opportunities 

q  Challenges 

u  The basic operation of ARM is pattern matching and counting 
u  The huge capacity of STE and counter elements of AP allows 

matching/counting hundreds – thousands itemsets in parallel 

Ø  The patterns in ARM are discontinuous  
     For set {a,m}, the following transactions are all matched 
     {a,m}, {a,b,m,}, {a, c, d, m, l} 

Ø  The patterns in ARM are unordered 
     For set {a,m}, the following transactions are all matched 
     {a,m}, {m, b, a}, {m, a} 
Ø  The number of patterns in ARM grow exponentially with the 

size of itemset 



AP Accelerated ARM - Algorithm 
• Apriori framework: 

§  Downward-closure property: a frequent itemset, all its 
subsets are also frequent and thus for an infrequent 
itemset, all its supersets must also be infrequent 

• Apriori Algorithm:  
§  Candidates of frequent (K+1)-itemsets are generated from 

K-itemsets 
§  Count the frequencies of candidates one by one to 

determine the frequent ones 
§  From 1 to n level itemset mining 
§  AP is used to accelerate each level  



AP Accelerated ARM – Concept 

Transactions

Itemset

ARM

Frequency 
counting

Input Stream 
(Connecting by a special 

symbol)

NFA by STEs

AP implementation

Counter Element

Item Symbol 
8-bit or 16-bit



AP Accelerated ARM - Flowchart 
Data preprocessing: 
1)  Filter out infrequent items  
2)  Recode -> 8-bit / 16-bit 

symbols 
3)  Recode transactions 
4)  Sort items in transactions 
5)  Connect transactions by a 

special symbol �\x255� 

Encoding: 
 freq_item# <255: 8-bit 
 254< freq_item# <64516:16-bit 

Sorting: 
Descending sorting according to 
item frequency [1] 

[1] Christian Borgelt, “Efficient implementations of Apriori and Eclat,” in Proc. FIMI ’03 , 2003 



AP Accelerated ARM – Automata Design 

Item Code
Bread 0
Milk 1

Diaper 2
Beer 3
Coke 4
Eggs 5

Separator 255(\xFF)

Transaction stream:

{Bread, Diaper} 

Trans. Items
1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread,Milk, Diaper, Beer, Coke

5 Bread, Milk, Diaper, Coke

01\xFF0235\xFF1234\xFF01234\xFF0124 

Level%0% Level%1% Level%2% Level%3%

Coun.ng%%
component%%

Level%0% Level%1% Level%2% Level%3% Level%4%

Coun/ng%%
component%%

{Milk, Beer, Eggs} 



AP Accelerated ARM – Optimization 
q  I/O minimization 

q  Concurrent mining k-and (k+1)-itemsets 

•  Add one more STE with a special symbol “254” for the ending sign of input 
•  The counter keep activating this STE after its threshold is reached 
•  Add one more ending symbol “254” in the end of input stream 
•  Only last cycle gets reports; avoid multiple report vectors during processing 

•  If capacity allows, mine k-itemsets and (k+1)-itemsets in parallel  
•  To generate (k+1)-itemset candidates, assume all k-itemset candidates are 

frequent  



q  Avoid routing reconfiguration: 
Entry&1& Entry&2& Entry&3&

 Multiple-entry NFA for variable-size itemset (MENFA-VSI). 

(a) AP macro of ME-NFA-VSI 

(b) Automaton for itemset {1, 3} 

(c) Automaton for itemset {2, 7, 8} 

(d) Automaton for itemset {4,5,25,30} 



Performance Evaluation – AP 

•  Target hardware: D480 X 48 

•  8-bit encoding:  
§    Capacity:  384 ME-NFA-VSI /chip,  18432/board 

§    Speed: 7.5ns/ item 

§    A ME-NFA-VSI supports 2-itemset to 40-itemset 

•  16-bit encoding:  
§    Capacity:  384 ME-NFA-VSI /chip, 18432/board  

§    Speed: 15ns/item  

§    A ME-NFA-VSI supports 2-itemset to 24-itemset 

•  Symbol replacement time: 45ms for an entire board 

q  AP capacity and overhead 



Performance Evaluation - Comparison 
q  Compare with other implementations 

q  Testing platform 

1.  Borgelt’s Apriori CPU sequential implementation [1] : �Apriori-CPU 
2.  A CPU serial implementation of Equivalent Class Transformation 

(Eclat) [2]: Eclat-1C 
3.  A CPU multi-threading implementation of Eclat[2] : Eclat-6C 
4.  A GPU implementation of Eclat[2]: Eclat-1G 

o  CPU: Intel(R) Xeon(R) CPU E5-1650(6 physical cores 3.20GHz) 
o  Mem: 32GB, 1.333GHz 
o  GPU: Nvidia Kepler K20C, 706 MHz clock, 2496 CUDA cores, 4.8GB 

global memory 

[1] C. Borgelt, “Efficient implementations of apriori and eclat,” in Proc. FIMI ’03 , 2003, p. 90.’ 
[2] F. Zhang, Y. Zhang, and J. D. Bakos, “Accelerating frequent itemset mining on graphics 
processing units,” J. Supercomput., vol. 66, no. 1, pp. 94–117, 2013. 



Performance Evaluation - Datasets 
q  Four real-world datasets 

q  Three synthetic datasets 

Pumsb, Accidents and Webdocs are from Frequent itemset mining dataset repository,” 
http://fimi.ua.ac.be/data/. 
ENWiki was generated English Wikipedia 2014 
 

T40D500K and T100D20M ware generated from IBM Market-Basket Synthetic Data Generator 
Webdocs5X is generated by duplicating transactions of Webdocs 5 times 



Performance Evaluation – vs. Apriori-CPU 
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The performance results of Apriori-AP on Accidents. DP 
time, SR time and CPU time represent the data process 
time on AP, symbol replacement time on AP and CPU 
time respectively  
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Performance Evaluation – Apriori vs. Eclat 
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The performance comparison of CPU sequential Apriori 
and Eclat 

Thought Eclat (Equivalent Class 
Clustering) has better performance on 
CPU, it is not a good fit for the AP: 
1)  Eclat  requires bit-level operations;      
       AP works on byte-level symbols 
2) Eclat  updates vertical 
representations of transactions for 
each new itemset candidate; 
dynamically changing the input stream 
is not efficient using the AP 
3) Even the hybrid search strategy 
cannot expose enough parallelism to 
make full use of the AP chips 

Though Eclat  has 8X performance advantage in average cases, the vertical bitset 
representation become less efficient for sparse and large dataset (high #trans and #freq 
item ratio). 



Performance Evaluation – Architecture impacts 
q  STE symbol replacement time 

q   Normalizing for technology 

0.80 0.75 0.70 0.65 0.60 0.55
0

100

200

300

400

 

 

C
om

pu
ta

tio
n 

Ti
m

e 
(s

)

Relative minimum support 

 1.0X Symbol replacement time
 0.5X Symbol replacement time
 0.1X Symbol replacement time

The impact of symbol replacement time on Apriori-AP 
performance for Pumsb 

The symbol replacement latency 
can be quite important for small 
and dense datasets that require 
multiple passes in each Apriori  
iteration, but this latency may be 
significantly reduced in future 
generations of the AP. 

To compare the different architectures in the same semiconductor technology mode, 
we show the performance of technology projections on 32nm and 28nm technologies 
assuming linear scaling for clock frequency and square scaling for capacity[1]. 

 [1] J. Rabaey, A. Chandrakasan, and B. Nikoli´c, Digital Integrated Circuits , 2nd ed. Pearson Education, 2003. 



Performance Evaluation – vs. Eclat 
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Performance Evaluation – Data size 
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Webdocs T100 
T100: the datasets with different sizes are 
obtained by varying the number of 
transactions using the IBM synthetic data 
generator 

Webdocs: the different data sizes are obtained 
by randomly sampling the transactions or by 
concatenating duplicates of the whole dataset of 
Webdocs 



Conclusions and Future Work 
v  Hardware-accelerated ARM solution using Micron’s AP architecture - MISD 
v  Novel automaton design for ARM 
v  Several optimization strategies: 

•  IO minimization 
•  Multiple-entry NFA to avoid routing reconfiguration 
•  Concurrent mining  

v  Proposed AP design can match and count up to 18,432  itemsets in parallel on an 
AP D480 48-core board 

v  Up to 129X speedup over single-core CPU implementation of Apriori 
v  Outperforms the multicore-based and GPU-based implementations of Eclat  ARM 

with up to 49X speedups, especially on large datasets  
v  Technology projections suggest even better speedups possible relative to the 

equivalent-process node of CPUs and GPUs 
v  Studies on data size demonstrate the memory constraint of parallel Eclat  ARM, 

particularly for GPU implementation but nice scalability of our AP solution 
Ø  Will use the AP to accelerate other complex pattern mining tasks such as frequent 

sequential pattern mining and frequent episode mining for next step 


