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•  Genera&on	of	human	behavior	data	
–  Online	behavior:		

•  social	media,	search	log	
•  Targeted	adver&sing/	content	sharing	
•  Personalized	IR	

–  Offline	behavior:		
•  Sensors,	smart	devices	
•  Predic)ng	occupancy	and	energy	usage		
•  Anomaly	detec&on	in	assisted	living	facili&es	
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Modeling	Temporal	Human	Behavior	
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•  Temporal	smoothness	(lag)	
–  Working		from	3	pm	to	4pm		

(and	then	con&nue	aWer	4pm)	

•  Behavior	rhythm	(cycle)	
–  Watching	TV	at	every	Saturday	night	

•  Interac&on	among	mul&ple	ac&vi&es	
–  Working	&ll	late	night	delays	sleep	&me	
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Factors	Affec&ng	Regular	Temporal	
Behavior	
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Factors	vary	across	
individuals	and	behavior	

Personalized	
models	



– Factors	vary	over	mul&-scale	temporal	contexts	
•  Hour	of	the	day	
•  Day	of	the	week	
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Dynamic	Nature	Of	Behavior	

Adap&ve	modeling	
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•  Extracts	features	from	major	temporal	factors	
•  Encodes	mul&-scale	temporal	contexts	to	ensure	
adap&ve	learning	

•  A	linear	predic&ve	model	with	explanatory	power	
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Contribu&on:	Mul&-scale		Adap&ve	
Personalized	Model	(MAPer)	
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Solu&on	Overview	
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Behavior	&me	series	

Behavior	Matrix	

Extract	features:	lag,	cycle,	interac)on,	
temporal	context	

Use	features	for	predic&on		



Crea&ng	Behavior	Time	Series	
•  Quan&fy	behavior	in	the	temporal	domain	as	discrete	

behavior	sample	
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Crea&ng	Behavior	Sample	Matrix	
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Lag	and	Cycle	Features	
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•  Lag	of	order	i	at	&me	yt	:	yt-i		

•  Cycle	of	behavior	&me	series	
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Temporal	Context	Features	
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•  Daily	basis	vector:	

	
•  Weekly	basis	vector:	
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Features	for	a	Single	Ac&vity	
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Only	daily	basis	vector:		
Daily	scale	Adap&ve	Personalized	model	(DAPer)	
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Only		weekly	basis	vector:		
Weekly	scale	Adap&ve	Personalized	model	(WAPer)	

Both								and								:	
Mul&-scale		Adap&ve	Personalized	model	(MAPer)	
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Interac&on	Features	for	Mul&ple	Ac&vi&es	
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Behavior	matrix	for		
Ac&vity	k	

Behavior	matrix	for		
Ac&vity	k’1	

Behavior	matrix	for		
Ac&vity	k’2	
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Interac&on	Features	for	Mul&ple	Ac&vi&es	
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Behavior	matrix	for		
Ac&vity	k	

Behavior	matrix	for		
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Behavior	matrix	for		
Ac&vity	k’2	

ac)vity	 Interac)ons	
R1	sleep	 Brushing	teeth	

Using	internet	
Watching	TV	
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…	 …	
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•  Time	series	predic&on	
–  Seasonal	ARIMA	(SARIMA)	model	
–  Does	not	consider	temporal	context	of	behavior	

•  Modeling	online	user	behavior	
–  Search	query	[K.	Radnisky	et	al,	WWW	2012;	J.	Yang	et	al,	WSDM	2011]	
–  Social	media	posts		[F.	Abel	et	al,	UMAP	2011]	
–  Focus	on		temporal	panern	of	user	generated	contents	rather	than	

actual	user	behavior	

•  Modeling	offline	user	behavior	
–  Computer	vision	and	WSN:	Sensing	and	recognizing	different	ac&vi&es	

of	daily	living	
–  Don’t	focus	on	predic&ng	
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Overview	of	Evalua&on	
•  Predic&ng	behavior	intensity	at	a	&me	interval	as	a	
regression	problem	
–  Performance	metric:	MSE,	Pearson	Correla&on	

•  4	real	datasets	
•  Comparison	with		
–  Parametric	and	non	parametric	baselines	
–  state-of-art	SARIMA	model	

•  Sensi&vity	analysis	

15	

Challenges	Mo&va&on	
Related	
Works	Approach	 Experiments	 Conclusion	Results	Experiments	



Datasets	
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Dataset	 Span	 #	of	users	 Behavior	sample	
Twiner	 5	months	 1274		 #	of	tweets	/hour	

Search	log	
	

3	months	 1307		 #	of	unique	search	queries	/hour	

Online	Behavior	Data	

Dataset	 Span	 #	of	resident	 Behavior	sample	
ARAS	 1	month	 2	

Dura&on	of	ac&vity/half	hour	HOLMES	
	

3	months	 1	

Offline	Behavior	Data	



Baselines	
•  Moving	average	over	both	lag	and	cycle	terms	(MA)	

•  Auto-regressive	method	with	cycle	feature	(AR-C)	
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Comparing	with	Baselines	
•  On	average,		MAPer	reduces	MSE	by	10%	and	increases		Pearson	

correla&on	by		83%	
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Comparing	with	State	of	Art	
	
•  On	average,	MAPer	reduces	MSE	by	14%	and	increases	Pearson	

Correla&on	by	44%	than	SARIMA	
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Effect	of	Temporal	Context	Features	
•  Daily	context	is	more	useful	than	weekly	context	
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Effect	of	Interac&on	Features	
•  Interac&on	features	improves	the	performance	
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Results:	Explanatory	Power	of	MAPer		
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•  Quan&fy	effect	of	different	features	
•  Detec&ng	user	similarity	more	precisely	



Insights	from	results	
Experiment	 Online	Behavior		 Offline	Behavior	

Predic&on	 MAPer	
	 MAPer	with	intera&on	

Personaliza&on	 ü	 NA	

Adap&ve	Learning	 ü	 ü	

Varia&on	of	temporal		
window	length	 Higher	bener	 Varies	for	each	ac&vity:	

having	snack	vs	sleep	

Varia&on	of	training	set	size	 Lower	bener	

Varia&on	of	lag	 No	significant	effect	
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Concluding	Remarks	
•  A	personalized	interpretable	model	for	temporal	behavior	

predic&on	
•  Virtual	and	physical	behavior	
•  Some	regularity	in	behavior	that	conforms	with	hours	of	the	

day,	day	of	the	week	
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Thanks!	
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