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Modeling Temporal Human Behavior

e Generation of human behavior data

— Online behavior:

* social media, search log
» Targeted advertising/ content sharing

* Personalized IR
— Offline behavior:
* Sensors, smart devices

* Predicting occupancy and energy usage
* Anomaly detection in assisted living facilities
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Challenges

Factors Affecting Regular Temporal
Behavior

 Temporal smoothness (lag)

— Working from 3 pm to 4pm
(and then continue after 4pm)

e Behavior rhythm (cycle)
— Watching TV at every Saturday night

* Interaction among multiple activities
— Working till late night delays sleep time




Challenges

Dynamic Nature Of Behavior

— Factors vary over multi-scale temporal contexts

* Hour of the day Coogh ww

* Day of the week -
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Approach

Contribution: Multi-scale Adaptive
Personalized Model (MAPer)

e Extracts features from major temporal factors

* Encodes multi-scale temporal contexts to ensure
adaptive learning

* Alinear predictive model with explanatory power



Approach

Solution Overview

Behavior time series

Behavior Matrix

Extract features: lag, cycle, interaction,
temporal context

Use features for prediction




Approach

Creating Behavior Time Series

* Quantify behavior in the temporal domain as discrete
behavior sample

Number of tweets/ hour

Twitter behavior time series for 15t hour
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Approach

Creating Behavior Sample Matrix

Behavior Sample Matrix
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Approach

Lag and Cycle Features
* Lagof orlderiat timevy, vy,
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e Cycle of behavior time series
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Approach

Temporal Context Features

* Daily basis vector: g,

H,
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Example: Basis vector for hour 3
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Approach

Features for a Single Activity
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Temporal Context

Lag Cycle

Only daily basis vector: Ed
Daily scale Adaptive Personalized model (DAPer)

Only weekly basis vector: EW
Weekly scale Adaptive Personalized model (WAPer)

Both Ed and EW
Multi-scale Adaptive Personalized model (MAPer)
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Approach

Interaction Features for Multiple Activities
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Approach

Interaction Features for Multiple Activities

activity | Interactions __

R1 sleep Brushing teeth
Using internet
Behavior matrix for Watching TV
Activity k', :
R2 sleep Brushing teeth
Watching TV
Behavior matrix for Washing dishes
Activity k',
R1 snack Watching TV
- Using internet
), Behavior matrix for Talking on phone
Activity k

interaction



Related
Works

Related Works

* Time series prediction
— Seasonal ARIMA (SARIMA) model
— Does not consider temporal context of behavior

* Modeling online user behavior
— Search query [K. Radnisky et al, WWW 2012; J. Yang et al, WSDM 2011]
— Social media posts [F. Abel et al, UMAP 2011]

— Focus on temporal pattern of user generated contents rather than
actual user behavior

* Modeling offline user behavior

— Computer vision and WSN: Sensing and recognizing different activities
of daily living
— Don’t focus on predicting
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Overview of Evaluation

* Predicting behavior intensity at a time interval as a
regression problem

— Performance metric: MSE, Pearson Correlation
* 4 real datasets
 Comparison with

— Parametric and non parametric baselines
— state-of-art SARIMA model

Sensitivity analysis
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Experiments

Datasets

Online Behavior Data

Dataset ___|Span | #of users | Behavior sample

Twitter 5 months 1274 # of tweets /hour

Search log 3 months 1307 # of unique search queries /hour

Offline Behavior Data

m # of resident | Behavior sample

ARAS 1 month
HOLMES 3 months 1 Duration of activity/half hour
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Baselines
 Moving average over both lag and cycle terms (MA)
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. Auto-regressive method with cycle feature (AR-C)
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Comparing with Baselines

* On average, MAPer reduces MSE by 10% and increases Pearson
correlation by 83%
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Comparing with State of Art

 On average, MAPer reduces MSE by 14% and increases Pearson
Correlation by 44% than SARIMA
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Effect of Temporal Context Features

* Daily context is more useful than weekly context

Pearson Correlation
Dataset | DAPer | WAF '
Search log | 0.33
Twitter 0.49
ARAS 0.78
HOLMES 0.58

Mean Square Error
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Effect of Interaction Features

* Interaction features improves the performance

Pearson Correlation || Mean Square Error

ARAS HOLMES ARAS | HOLMES
MAPer
w/o Interaction | 0.7169 0.385 0.0184 0.0009
MAPer 0.782 0.583 0.016 0.0009

| “olmprovement | 9 | 51 | 15 | - |
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Results

Results: Explanatory Power of MAPer

* Quantify effect of different features

* Detecting user similarity more precisely
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(a) AR-C model

(b) MAPer model



Insights from results
Experiment | Online Behavior | Offline Behavior

Prediction S MAPer with interation
Personalization v NA
Adaptive Learning v v

Varies for each activity:
having snack vs sleep

Variation of temporal

window length Ager [DeiEn

Variation of training set size Lower better

Variation of lag No significant effect
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Conclusion

Concluding Remarks

* A personalized interpretable model for temporal behavior
prediction

e Virtual and physical behavior

* Some regularity in behavior that conforms with hours of the
day, day of the week
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